• Title/Summary/Keyword: requirement engineering

Search Result 3,024, Processing Time 0.036 seconds

Dictionary Attacks against Password-Based Authenticated Three-Party Key Exchange Protocols

  • Nam, Junghyun;Choo, Kim-Kwang Raymond;Kim, Moonseong;Paik, Juryon;Won, Dongho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3244-3260
    • /
    • 2013
  • A three-party password-based authenticated key exchange (PAKE) protocol allows two clients registered with a trusted server to generate a common cryptographic key from their individual passwords shared only with the server. A key requirement for three-party PAKE protocols is to prevent an adversary from mounting a dictionary attack. This requirement must be met even when the adversary is a malicious (registered) client who can set up normal protocol sessions with other clients. This work revisits three existing three-party PAKE protocols, namely, Guo et al.'s (2008) protocol, Huang's (2009) protocol, and Lee and Hwang's (2010) protocol, and demonstrates that these protocols are not secure against offline and/or (undetectable) online dictionary attacks in the presence of a malicious client. The offline dictionary attack we present against Guo et al.'s protocol also applies to other similar protocols including Lee and Hwang's protocol. We conclude with some suggestions on how to design a three-party PAKE protocol that is resistant against dictionary attacks.

Extraction of CTQ for the Improvement of the Education Quality Using QFD in College (QFD를 이용한 전문대학 공학부 교육내실화 품질요소 도출)

  • Park, Byoung-Tae;Kim, Bok-Key;Kwak, Moon-Su;Lee, Eun-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.231-239
    • /
    • 2013
  • This intensity is now on a global scale with countless universities across the globe competing for better services, programs and diplomas. For to counteract such a considerable change, in this paper CTQ(Critical to Quality) is extracted for the improvement of the education quality using QFD(Quality Function Development) in college. QFD is a structured approach to seek out voice of customers, understanding their needs, and ensure that their needs are met. First of all, the requirements of the customer are surveyed and analyzed, and then with these results the strategic alternatives are decided. In sequence, the importance and assessment ratings on the requirement of customers are surveyed. Finally, from the relation between the requirement of customers and the strategic alternatives the CTQ is extracted. The derived CTQ is reviewed and analyzed in detail. It'll have major positive effects on the competitiveness of college as well as the education quality of departments.

Elder Drivers and Age-related Changes: A User Requirement Analysis for In-Vehicle Information System (고령자 친화형 차량내부 정보시스템 개발을 위한 사용자 요구사항 도출)

  • Bae, Sung-Hyun;Sabando, Jose Fernando;Kim, Sang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.103-114
    • /
    • 2017
  • The objective of this study is to analyze the needs and determine the requirements of elder drivers for effectively using In-vehicle Information System (IVIS), by reducing cognitive and physical impact on this vulnerable group. The persona method was used to determine the relevant characteristics of older drivers. Task analysis was performed in order to obtain general interaction problems of the personas when using a common function of recent days IVIS. The results were classified in the different usability goals as general requirements, specific needs. This study suggest improvement directions in order to develop an elderly friendly IVIS; in addition, different usability metrics were suggested. In this way, elder drivers would easily interact with new powerful functions supplied by IVIS of modern cars; while improving safety and comfort of an rapidly aging society.

A Finite Capacity Material Requirement Planning System for a Multi-Stage Assembly Factory: Goal Programming Approach

  • Wuttipornpun, Teeradej;Yenradee, Pisal;Beullens, Patrick;van Oudheusden, Dirk L.
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.23-35
    • /
    • 2005
  • This paper aims to develop a practical finite capacity MRP (FCMRP) system based on the needs of an automotive parts manufacturing company in Thailand. The approach includes a linear goal programming model to determine the optimal start time of each operation to minimize the sum of penalty points incurred by exceeding the goals of total earliness, total tardiness, and average flow-time considering the finite capacity of all work centers and precedence of operations. Important factors of the proposed FCMRP system are penalty weights and dispatching rules. Effects of these factors on the performance measures are statistically analyzed based on a real situation of an auto-part factory. Statistical results show that the dispatching rules and penalty weights have significant effects on the performance measures. The proposed FCMRP system offers a good tradeoff between conflicting performance measures and results in the best weighted average performance measures when compared to conventional forward and forward-backward finite capacity scheduling systems.

INTERACTIVE SYSTEM DESIGN USING THE COMPLEMENTARITY OF AXIOMATIC DESIGN AND FAULT TREE ANALYSIS

  • Heo, Gyun-Young;Lee, Tae-Sik;Do, Sung-Hee
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.51-62
    • /
    • 2007
  • To efficiently design safety-critical systems such as nuclear power plants, with the requirement of high reliability, methodologies allowing for rigorous interactions between the synthesis and analysis processes have been proposed. This paper attempts to develop a reliability-centered design framework through an interactive process between Axiomatic Design (AD) and Fault Tree Analysis (FTA). Integrating AD and FTA into a single framework appears to be a viable solution, as they compliment each other with their unique advantages. AD provides a systematic synthesis tool while FTA is commonly used as a safety analysis tool. These methodologies build a design process that is less subjective, and they enable designers to develop insights that lead to solutions with improved reliability. Due to the nature of the two methodologies, the information involved in each process is complementary: a success tree versus a fault tree. Thus, at each step a system using AD is synthesized, and its reliability is then quantified using the FT derived from the AD synthesis process. The converted FT provides an opportunity to examine the completeness of the outcome from the synthesis process. This study presents an example of the design of a Containment Heat Removal System (CHRS). A case study illustrates the process of designing the CHRS with an interactive design framework focusing on the conversion of the AD process to FTA.

Reactivity balance for a soluble boron-free small modular reactor

  • van der Merwe, Lezani;Hah, Chang Joo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.648-653
    • /
    • 2018
  • Elimination of soluble boron from reactor design eliminates boron-induced reactivity accidents and leads to a more negative moderator temperature coefficient. However, a large negative moderator temperature coefficient can lead to large reactivity feedback that could allow the reactor to return to power when it cools down from hot full power to cold zero power. In soluble boron-free small modular reactor (SMR) design, only control rods are available to control such rapid core transient. The purpose of this study is to investigate whether an SMR would have enough control rod worth to compensate for large reactivity feedback. The investigation begins with classification of reactivity and completes an analysis of the reactivity balance in each reactor state for the SMR model. The control rod worth requirement obtained from the reactivity balance is a minimum control rod worth to maintain the reactor critical during the whole cycle. The minimum available rod worth must be larger than the control rod worth requirement to manipulate the reactor safely in each reactor state. It is found that the SMR does have enough control rod worth available during rapid transient to maintain the SMR at subcritical below k-effectives of 0.99 for both hot zero power and cold zero power.

A Miniaturized Catadioptric Laser-Irradiation-Precision Test System

  • Liu, Huan;Sun, Hao;Wang, Chunyan
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.164-172
    • /
    • 2021
  • In this paper a catadioptric laser-irradiation-precision test system is designed, to achieve a high-precision laser-irradiation-accuracy test. In this system, we adopt the method of imaging the entire target surface at a certain distance to realize the measurement of laser-irradiation precision. The method possesses the advantages of convenient operation, high sensitivity, and good stability. To meet the test accuracy requirement of 100 mm/km (0.01%), the coma, field curvature, and distortion over the entire field of view should be eliminated from the optical system's design. Taking into account the whole length of the tube and the influence of stray light on the structure type, a catadioptric system with a hood added near the primary imaging surface is designed. After optimization using the ZEMAX software, the modulation transfer function (MTF) of the designed optical system is 0.6 at 30 lp/mm, the full-field-of-view distortion is better than 0.18%, and the energy concentration in the 10-㎛-radius surrounding circle reaches about 90%. The illumination-accuracy test results show that the measurement accuracy of the radiation hit rate is better than 50 mm when the test distance is 1 km, which is better than the requirement of 100 mm/km for the laser-irradiation-accuracy test.

Traffic Engineering with Segment Routing under Uncertain Failures

  • Zheng, Zengwei;Zhao, Chenwei;Zhang, Jianwei;Cai, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2589-2609
    • /
    • 2021
  • Segment routing (SR) is a highly implementable approach for traffic engineering (TE) with high flexibility, high scalability, and high stability, which can be established upon existing network infrastructure. Thus, when a network failure occurs, it can leverage the existing rerouting methods, such as rerouting based on Interior Gateway Protocol (IGP) and fast rerouting with loop-free alternates. To better exploit these features, we propose a high-performance and easy-to-deploy method SRUF (Segment Routing under Uncertain Failures). The method is inspired by the Value-at-Risk (VaR) theory in finance. Just as each investment risk is considered in financial investment, SRUF also considers each traffic distribution scheme's risk when forwarding traffic to achieve optimal traffic distribution. Specifically, SRUF takes into account that every link may fail and therefore has inherent robustness and high availability. Also, SRUF considers that a single link failure is a low-probability event; hence it can achieve high performance. We perform experiments on real topologies to validate the flexibility, high-availability, and load balancing of SRUF. The results show that when given an availability requirement, SRUF has greater load balancing performance under uncertain failures and that when given a demand requirement, SRUF can achieve higher availability.

EMC Safety Margin Verification for GEO-KOMPSAT Pyrotechnic Systems

  • Koo, Ja-Chun
    • International Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Pyrotechnic initiators provide a source of pyrotechnic energy used to initiate a variety of space mechanisms. Pyrotechnic systems build in electromagnetic environment that may lead to critical or catastrophic hazards. Special precautions are need to prevent a pulse large enough to trigger the initiator from appearing in the pyrotechnic firing circuits at any but the desired time. The EMC verification shall be shown by analysis or test that the pyrotechnic systems meets the requirements of inadvertent activation. The MIL-STD-1576 and two range safeties, AFSPC and CSG, require the safety margin for electromagnetic potential hazards to pyrotechnic systems to a level at least 20 dB below the maximum no-fire power of the EED. The PC23 is equivalent to NASA standard initiator and the 1EPWH100 squib is ESA standard initiator. This paper verifies the two safety margins for electromagnetic potential hazards. The first is verified by analyzing against a RF power. The second is verified by testing against a DC current. The EMC safety margin requirement against RF power has been demonstrated through the electric field coupling analysis in differential mode with 21 dB both PC23 and 1EPWH100, and in common mode with 58 dB for PC23 and 48 dB for 1EPWH100 against the maximum no-fire power of the EED. Also, the EMC safety margin requirement against DC current has been demonstrated through the electrical isolation test for the pyrotechnic firing circuits with greater than 20 dB below the maximum no-fire current of the EED.

Design and Implementation of V-BLAST for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 V-BLAST의 설계 및 구현)

  • Choi Yong-Woo;Park In-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.415-418
    • /
    • 2004
  • This paper describes a VLSI implementation of BLAST detection for MIMO-OFDM systems. To achieve high speed requirement, we propose the fully pipeline architecture for BLAST structure. This design is implemented using $0.18{\mu}m$ CMOS technology. For a 4-transmit and 4-receive antennas system, it takes $7.5{\mu}s$ to calculate nulling vector and detection order from 48 channel matrixes.

  • PDF