• Title/Summary/Keyword: representation of c*-algebra

Search Result 22, Processing Time 0.024 seconds

CONTINUITY OF BANACH ALGEBRA VALUED FUNCTIONS

  • Rakbud, Jittisak
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.527-538
    • /
    • 2014
  • Let K be a compact Hausdorff space, $\mathfrak{A}$ a commutative complex Banach algebra with identity and $\mathfrak{C}(\mathfrak{A})$ the set of characters of $\mathfrak{A}$. In this note, we study the class of functions $f:K{\rightarrow}\mathfrak{A}$ such that ${\Omega}_{\mathfrak{A}}{\circ}f$ is continuous, where ${\Omega}_{\mathfrak{A}}$ denotes the Gelfand representation of $\mathfrak{A}$. The inclusion relations between this class, the class of continuous functions, the class of bounded functions and the class of weakly continuous functions relative to the weak topology ${\sigma}(\mathfrak{A},\mathfrak{C}(\mathfrak{A}))$, are discussed. We also provide some results on its completeness under the norm defined by ${\mid}{\parallel}f{\parallel}{\mid}={\parallel}{\Omega}_{\mathfrak{A}}{\circ}f{\parallel}_{\infty}$.

α-COMPLETELY POSITIVE MAPS ON LOCALLY C*-ALGEBRAS, KREIN MODULES AND RADON-NIKODÝM THEOREM

  • Heo, Jaeseong;Ji, Un Cig;Kim, Young Yi
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.61-80
    • /
    • 2013
  • In this paper, we study ${\alpha}$-completely positive maps between locally $C^*$-algebras. As a generalization of a completely positive map, an ${\alpha}$-completely positive map produces a Krein space with indefinite metric, which is useful for the study of massless or gauge fields. We construct a KSGNS type representation associated to an ${\alpha}$-completely positive map of a locally $C^*$-algebra on a Krein locally $C^*$-module. Using this construction, we establish the Radon-Nikod$\acute{y}$m type theorem for ${\alpha}$-completely positive maps on locally $C^*$-algebras. As an application, we study an extremal problem in the partially ordered cone of ${\alpha}$-completely positive maps on a locally $C^*$-algebra.

GROUND STATES OF A COVARIANT SEMIGROUP C-ALGEBRA

  • Jang, Sun Young;Ahn, Jieun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.339-349
    • /
    • 2020
  • Let P ⋊ ℕx be a semidirect product of an additive semigroup P = {0, 2, 3, ⋯ } by a multiplicative positive natural numbers semigroup ℕx. We consider a covariant semigroup C-algebra 𝓣(P ⋊ ℕx) of the semigroup P ⋊ ℕx. We obtain the condition that a state on 𝓣(P ⋊ ℕx) can be a ground state of the natural C-dynamical system (𝓣(P ⋊ ℕx), ℝ, σ).

VECTOR GENERATORS OF THE REAL CLIFFORD ALGEBRA Cℓ0,n

  • Song, Youngkwon;Lee, Doohann
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.571-579
    • /
    • 2014
  • In this paper, we present new vector generators of a matrix subalgebra $L_{0,n}$, which is isomorphic to the Clifford algebra $C{\ell}_{0,n}$, and we obtain the matrix form of inverse of a vector in $L_{0,n}$. Moreover, we consider the solution of a linear equation $xg_2=g_2x$, where $g_2$ is a vector generator of $L_{0,n}$.

ALGEBRAS OF GELFAND-CONTINUOUS FUNCTIONS INTO ARENS-MICHAEL ALGEBRAS

  • Oubbi, Lahbib
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.585-602
    • /
    • 2019
  • We characterize Gelfand-continuous functions from a Tychonoff space X into an Arens-Michael algebra A. Then we define several algebras of such functions, and investigate them as topological algebras. Finally, we provide a class of examples of (metrizable) commutative unital complete Arens-Michael algebras A and locally compact spaces X for which all these algebras differ from each other.

A NUMBER SYSTEM IN ℝn

  • Jeong, Eui-Chai
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.945-955
    • /
    • 2004
  • In this paper, we establish a number system in $R^n$ which arises from a Haar wavelet basis in connection with decompositions of certain Cuntz algebra representations on $L^2$( $R^n$). Number systems in $R^n$ are also of independent interest [9]. We study radix-representations of $\chi$ $\in$ $R^n$: $\chi$:$\alpha$$_{ι}$ $\alpha$$_{ι-1}$$\alpha$$_1$$\alpha$$_{0}$$\alpha$$_{-1}$ $\alpha$$_{-2}$ … as $\chi$= $M^{ι}$$\alpha$$_{ι}$ $\alpha$+…M$\alpha$$_1$$\alpha$$_{0}$$M^{-1}$ $\alpha$$_{-1}$$M^{-2}$ $\alpha$$_{-2}$ +… where each $\alpha$$_{k}$ $\in$ D, and D is some specified digit set. Our analysis uses iteration techniques of a number-theoretic flavor. The view-point is a dual one which we term fractals in the large vs. fractals in the small,illustrating the number theory of integral lattice points vs. fractions.s vs. fractions.

REPRESENTATIONS OF C*-TERNARY RINGS

  • Arpit Kansal;Ajay Kumar;Vandana Rajpal
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.123-135
    • /
    • 2023
  • It is proved that there is a one to one correspondence between representations of C*-ternary ring M and C*-algebra 𝒜(M). We discuss primitive and modular ideals of a C*-ternary ring and prove that a closed ideal I is primitive or modular if and only if so is the ideal 𝒜(I) of 𝒜(M). We also show that a closed ideal in M is primitive if and only if it is the kernel of some irreducible representation of M. Lastly, we obtain approximate identity characterization of strongly quasi-central C*-ternary ring and the ideal structure of the TRO V ⊗tmin B for a C*-algebra B.

REDUCED CROSSED PRODUCTS BY SEMIGROUPS OF AUTOMORPHISMS

  • Jang, Sun-Young
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.97-107
    • /
    • 1999
  • Given a C-dynamical system (A, G, $\alpha$) with a locally compact group G, two kinds of C-algebras are made from it, called the full C-crossed product and the reduced C-crossed product. In this paper, we extend the theory of the classical C-crossed product to the C-dynamical system (A, G, $\alpha$) with a left-cancellative semigroup M with unit. We construct a new C-algebra A $\alpha$rM, the reduced crossed product of A by the semigroup M under the action $\alpha$ and investigate some properties of A $\alpha$rM.

  • PDF

MATRIX OPERATORS ON FUNCTION-VALUED FUNCTION SPACES

  • Ong, Sing-Cheong;Rakbud, Jitti;Wootijirattikal, Titarii
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.375-415
    • /
    • 2019
  • We study spaces of continuous-function-valued functions that have the property that composition with evaluation functionals induce $weak^*$ to norm continuous maps to ${\ell}^p$ space ($p{\in}(1,\;{\infty})$). Versions of $H{\ddot{o}}lder^{\prime}s$ inequality and Riesz representation theorem are proved to hold on these spaces. We prove a version of Dixmier's theorem for spaces of function-valued matrix operators on these spaces, and an analogue of the trace formula for operators on Hilbert spaces. When the function space is taken to be the complex field, the spaces are just the ${\ell}^p$ spaces and the well-known classical theorems follow from our results.