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REPRESENTATIONS OF C∗-TERNARY RINGS

Arpit Kansal, Ajay Kumar, and Vandana Rajpal

Abstract. It is proved that there is a one to one correspondence between

representations of C∗-ternary ring M and C∗-algebra A(M). We discuss

primitive and modular ideals of a C∗-ternary ring and prove that a closed
ideal I is primitive or modular if and only if so is the ideal A(I) of

A(M). We also show that a closed ideal in M is primitive if and only
if it is the kernel of some irreducible representation of M . Lastly, we

obtain approximate identity characterization of strongly quasi-central C∗-

ternary ring and the ideal structure of the TRO V⊗tminB for a C∗-algebra
B.

1. Introduction and preliminaries

For Hilbert spaces H and K, let B(H,K) denote the space of all bounded
linear operators from H to K. A (concrete) ternary ring of operator (TRO)
between Hilbert spaces H and K is a norm closed subspace of B(H,K), which
is closed under the triple product (x, y, z)→ xy∗z. They were first introduced
by Hestenes [10]. Tensor products, inductive limits, representation and ideal
theory in category of TROs had been explored in a variety of papers including
[2,5,7–9,13,14,20]. Let V ⊂ B(H,K) be a TRO and V ∗ = {x∗ : x ∈ V } denote
the conjugate space of V . Let C(V ) and D(V ) denote the C∗-algebras gener-
ated by V V ∗ and V ∗V , respectively. Then, V is a non-degenerate and faithful
Hilbert left-C(V ) and right-D(V ) bimodule such that CV = V and V D = V .
Also, we have the C∗-isomorphisms C = K(VD) and Dop = K(CV ), where we
let K(VD) denote the space of all compact right-D module homomorphisms on
V and K(CV ) denote the space of all compact left-C module homomorphisms
on V . As given in [7], the C∗-algebra A(V ) generated by V , known as the
linking C∗-algebra of V , is defined by

A(V ) =

[
C(V ) V
V ∗ D(V )

]
.

A C∗-ternary ring is a complex Banach space M , equipped with a ternary
product (x, y, z)→ [x, y, z] of M3 into M which is linear in the first and third
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variable, conjugate linear in the second variable, associative in the sense that
[[x, y, z], u, v] = [x, y, [z, u, v]] = [x, [u, z, y], v] and satisfies ||[x, x, x]|| = ||x||3,
||[x, y, z]|| ≤ ||x||||y||||z||. We refer to [1], [19] and [23] for all necessary back-
ground. Clearly, every TRO (in particular C∗-algebra, Mm×n(C), the space of
all m × n matrices with entrices in C or B(H,K)) is a C∗-ternary ring. Re-
cently, several mathematicians have been interested in studying different kind
of maps and their stability between C∗-ternary rings. Hyers-Ulam stability of
hom-derivations was proved in [11]. In [18], C. Park et al. studied partial mul-
tipliers in C∗-ternary rings. M. Moslehian established the Hyers-Ulam-Rassias
stability of derivations in C∗-ternary rings [16]. The main subject of our paper
is representations and ideals of C∗-ternary rings. We first recall some basic ter-
minology related to C∗-ternary rings. A linear mapping φ between C∗-ternary
rings is called a (ternary) homomorphism if φ preserves the ternary structure,
i.e., φ([x, y, z]) = [φ(x), φ(y), φ(z)]. A norm-closed subspace I in a C∗-ternary
rings M is called a right (left) ideal in M if [I,M,M ] ⊂ I ([M,M, I] ⊂ I).
Throughout the paper, when we say that I is an ideal of M , we shall always
assume that I is a two sided closed ideal of M . Pluta and Russo [19] extended
the Hamana’s notion of linking C∗-algebras to the category of C∗-ternary rings
as follows: For a C∗-ternary ring M , let End(M) denote the set of all endo-
morphisms on M . Define,

E(M) = End(M)⊕ End(M)
op
,

where the scalar multiplication in [End(M)] is defined as (λ, f) → λf and for
g, h ∈M , define L(g, h) = [g, h, ·], R(g, h) = [·, h, g],

l(g, h) = (L(g, h), L(h, g)) ∈ E(M)

and

r(g, h) = (R(h, g), R(g, h)) ∈ E(M)op.

Next, let L = L(M) and R = R(M) denote the closure of span{l(g, h) : g, h ∈
M} and span{r(g, h) : g, h ∈ M} in B(M), respectively. Let A = (A1, A2) ∈
E(M), B = (B1, B2) ∈ E(M)op, and f ∈ M . Then M is a left E(M)-module
via (A, f)→ A·f = A1f and a right E(M)op-module via (f,B)→ f ·B = B1f .
Let M denote the vector space M with the element f denoted by f and with

the scalar multiplication defined by (λ, f) → λ ◦ f = λf . Then M is a left
E(M)op-module via (B, f) → B · f = B2f and a right E(M)-module via
(f,A)→ f ·A = A2f . Let

A = A(M) =

[
L(M) M
M R(M)

]
⊂ B(M ⊕R)

and define multiplication and involution in A by[
A f
g B

]
·
[
A′ f ′

g′ B′

]
=

[
A ·A′ + l(f, g′) A · f ′ + f ·B′
g ·A′ +B.g′ r(g, f ′) +B ◦B′

]
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and [
A f
g B

]#

=

[
A g

f B

]
.

It is immediate to see that if M is a TRO, then A(M) is ∗-isomorphic to its
linking C∗-algebra. Using ([19], Lemma 2.6), we obtain a functor M → A(M),

(M
φ−→ N) → (A(M)

A(φ)−−−→ A(N)) from the category of C∗-ternary rings
to the category of C∗-algebras as follows: Given a surjective homomorphism
φ : M → N , we have C∗-homomorphisms L(φ) : L(M) → L(N) and R(φ) :
R(M)→ R(N) by letting

L(φ)

(∑
i

([gi, hi, ·][h1, gi, ·])

)
=
∑
i

([φ(gi), φ(hi), ·], [φ(hi), φ(gi), ·])

and

R(φ)

(∑
i

([·, gi, hi][·, hi, gi])

)
=
∑
i

([·, φ(gi), φ(hi)], [·, φ(hi), φ(gi)]).

If the above φ is not surjective, then we can replace N by φ(N), which is a
norm-closed sub-C∗-ternary ring.

It is well-known that there is a one to one correspondence between represen-
tations of a TRO and of its linking C∗-algebra ([2]). The construction of A(M)
allows us to extend ([2], Proposition 3.1) from TROs to C∗-ternary rings. We
study the connection between irreducible representations of C∗-ternary ring M
and of C∗-algebra A(M).

Motivated by the ideal theory of C∗-algebras, we study primitive and mod-
ular ideals of C∗-ternary rings and relate them to corresponding primitive and
modular ideals of C∗-algebra A(M). We prove that there is a homeomorphism
between modular (primitive) ideals of M and A(M). We also show that an
ideal I of M is primitive if and only if I = ker(φ) for some irreducible rep-
resentation φ of M . An approximate identity characterization is obtained for
quasi central C∗-ternary rings. Finally, the ideal structure of injective tensor
product of a TRO and a C∗-algebra has been discussed.

2. Representation theory of C∗-ternary rings

Representations and ideals of C∗-algebras have been well studied. The
reader is referred to [22] and [17] for a detailed discussion on the same. In
this section, we obtain a one to one correspondence between representations of
a C∗-ternary ring M and of C∗-algebra A(M).

Definition. Let M be a C∗-ternary ring. A homomorphism φ : M → B(H,K)
is called a representation of M . If φ is injective it is called a faithful represen-
tation of M . φ is said to be nondegenerate if φ(M)H = K and φ(M)∗K = H
(or equivalently, if ζ1 ∈ H, ζ2 ∈ K are such that φ(M)ζ1 = 0 and φ(M)∗ζ2 = 0,
then ζ1 = 0 and ζ2 = 0).
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Let φ be a representation of M . Applying the functor A, we obtain a
C∗-algebra homomorphism A(φ) : A(M) → A(B(H,K)). Let σ be a ∗-
isomorphism from linking C∗-algebra B(K ⊕ H) of B(H,K) to A(B(H,K)).
Every representation of M induces a representation πφ = σ◦A(φ) of C∗-algebra
A(M).

Proposition 2.1. The map φ→ πφ is a bijection from the set of all represen-
tations of a C∗-ternary ring M onto the set of all representations C∗-algebra
A(M).

Proof. Let π : A(M) → B(H) be a representation of A(M). We identify

L(M), R(M) and M with their images in A(M) and put H1 = π(A(M))H
and H2 = H⊥1 then H = H2 ⊕H1. Let σ be a canonical isomorphism between
B(H) and A(B(H1, H2)). Then ρ = σ◦π is a representation of A(M) satisfying

ρ(L(M)) ⊂
[
B(H1) 0

0 0

]
, ρ(R(M)) ⊂

[
0 0
0 B(H2)

]
.

Let x ∈M and write

ρ =

[
ρ1 ρ2

ρ3 ρ4

]
.

Observe that

ρ

[
l(x, x) 0

0 0

]
= ρ

[
0 x
0 0

]
ρ

[
0 x
0 0

]#

= ρ

[
ρ1(x)ρ1(x)∗ + ρ2(x)ρ2(x)∗ ρ1(x)ρ3(x)∗ + ρ2(x)ρ4(x)∗

ρ3(x)ρ1(x)∗ + ρ4(x)ρ2(x)∗ ρ3(x)ρ3(x)∗ + ρ4(x)ρ4(x)∗

]
and therefore ρ3 = 0 = ρ4. Similarly, we get

ρ

[
0 0
0 r(x, x)

]
= ρ

[
0 x
0 0

]#

ρ

[
0 x
0 0

]
= ρ

[
ρ1(x)∗ρ1(x) ρ1(x)∗ρ2(x)
ρ2(x)∗ρ1(x) ρ2(x)∗ρ2(x)

]
and thus ρ1 = 0. Therefore we get a representation ρ2 of M with A(ρ2) = ρ.
Finally, setting φ = σ−1 ◦ ρ2 we are done. �

Definition. Let φ : M → B(H,K) be a representation of M . For closed
subspaces H1 ⊂ H and K1 ⊂ K, the pair (H1,K1) is said to be φ-invariant if
φ(M)H1 ⊂ K1 and φ(M)∗K1 ⊂ H1. A representation φ is said to be irreducible
if (0, 0) and (H,K) are the only invariant subspaces.

The proof of the next proposition is along the similar lines to the proof of
([2], Lemma 3.5), so we omit the proof.

Proposition 2.2. Let M be a C∗-ternary ring, and let φ : M → B(H,K) be
a representation of M and let π = πφ. Then the followings are equivalent:

(1) φ 6= 0 is irreducible.
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(2) L(φ) 6= 0 and R(φ) 6= 0 are irreducible representations of L(M) and
R(M), respectively.

(3) π 6= 0 is irreducible.

Definition. Let M be a C∗-ternary ring and φi : M → B(Hi,Ki) be a family
of representations. The sum representation φ : M → B(H,K) is the homomor-
phism with H := ⊕Hi, K := ⊕Ki and φ(x)((hi)i) := (φi(x)(hi))i for (hi)i ∈ H
and x ∈M .

The following corollary is an immediate consequence of the last proposition.

Corollary 2.3. Every non degenerate representation of a finite dimensional
C∗-ternary ring M is the direct sum of irreducible representations.

Proof. Let φ : M → B(H,K) be a nondegenerate representation of M . Let
π = πφ. Then π is a nondegenerate representation of A(M). By ([4], Theorem
I.10.7), π splits into a direct sum of irreducible representations say π = ⊕πi. By
the last proposition, there exist irreducible representations φi : M → B(H,K)
such that πi = πφi thus we obtain φ = ⊕φi. �

For an ideal I of a C∗-ternary ring M , it is immediate from ([19], Lemma
1.1) that A(I) is an ideal of C∗-algebra A(M). Moreover, it is not difficult to
see that the map θ defined by I → A(I) is a one-to-one correspondence between
closed ideals of M and A(M). Let Id(M) denote the space of all closed ideals of
M . We define a topology on Id(M) which we will call τw-topology. A subbasis
for τw-topology is given by the sets of the form U(J) = {I ∈ Id(M) : I + J}
where J ∈ Id(M). It is not difficult to verify that Id(M) with τw-topology is
T0-space.

Proposition 2.4. The map θ : Id(M)→ Id(A(M)) is a homeomorphism.

Proof. It is enough to prove that θ and its inverse are continuous. Let

U(A(J)) = {A(I1) ∈ Id(A(M)) : A(I1) + A(J)}

be an basic open set of Id(A(M)). Note that, θ−1(U(A(J))) = U(J) so the map
θ is continuous. Similarly, note that θ(U(I)) = U(A(I)) so the map θ is an open
map. In particular, θ−1 is continuous and therefore θ is a homeomorphism. �

It may be noted that for a left ideal I of M , (I : M) = {a ∈M : [a,M,M ] ⊂
I} is an ideal of M .

Definition. A left ideal I is called modular if there exist e and f in M such
that a− [a, e, f ] ∈ I for every a ∈M . An ideal I is called a maximal modular
ideal if it is modular and also a maximal proper ideal.

Evidently if I is a modular ideal, then (I : M) is the largest ideal of M
contained in I. By definition, every ideal containing a modular ideal is itself
modular. Therefore an ideal I of M is maximal modular if and only if it is
maximal within the set of all modular proper ideal.
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Definition. An ideal I of M is called primitive if it is quotient of a maximal
modular left ideal, i.e., I = (J : M) for some maximal modular left ideal J of
M .

Proposition 2.5. A maximal modular ideal is primitive.

Proof. Let I be a proper modular ideal of M and let e and f in M be such
that a − [a, e, f ] ∈ I for all a ∈ M . Let J be a maximal modular left ideal
containing I. Then, [I,M,M ] ⊂ I ⊂ J and therefore, I ⊂ (J : M). Hence, the
maximality of I implies that I = (J : M). �

If M is commutative ([x, y, z] = [z, y, x]), then the converse is also true, that
is, if I is a primitive ideal of M , then I is maximal modular. For a C∗-ternary
ring M , let Max(M) and Prim(M) denote the set of all closed maximal and
primitive ideals of M , respectively.

Theorem 2.6. Let M be a C∗-ternary ring and I a closed ideal of M . Then
the following statements hold:

(1) θ maps Max(M) homeomorphically onto Max(A(M)).
(2) I is modular if and only if A(I) is modular.
(3) If I ′ is a modular closed ideal of M and J = (I ′ : M), then A(J) =
A(I ′ : M) = (A(I ′) : A(M)).

(4) θ maps Prim(M) homeomorphically onto Prim(A(M)).

Proof. (1) Suppose I is maximal and A(I) ⊂ J for some ideal J of A(M). But
J = A(I ′) so A(I) ⊂ A(I ′) and therefore I ⊂ I ′, contradiction as I is maximal.
The converse is obvious as I ⊂ I ′ implies A(I) ⊂ A(I ′).

(2) Suppose that I is modular so there exist e, f ∈M such that x−[x, e, f ] ∈
I for all x ∈M . Let

u =

[
l(e, f) 0

0 r(e, f)

]
.

Note that A(M) − A(M)u ∈ A(I) and A(M) − uA(M) ∈ A(I) so A(I) is
modular.

Conversely, assume that A(I) is modular so there exists u such that A(M)−
A(M)u ∈ A(I) and A(M)− uA(M) ∈ A(I). Let

u =

[
a b
c d

]
.

Since A(I) is modular so we must have,[
0 x
0 0

]
−
[
0 x
0 0

]
·
[
a b
c d

]
=

[
−l(x, c) x− xd

0 0

]
∈ A(I).

In particular, x− xd ∈ I for all x. Similarly, x− dx ∈ I. As d ∈ A(I) so we
may assume d = r(e, f) and therefore I is modular.

(3) Assume J = (I ′ : M). As I ′ is modular therefore there exist e, f ∈ M
such that x− [x, e, f ] ∈M and x− [f, e, x] ∈M for all x ∈M . Suppose a ∈ (I ′ :
M), note that as I ′ is modular so we have a = [a, e, f ]− ([a, e, f ]− a) ∈ I ′ and
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therefore (I ′ : M) ⊂ I ′ which implies J ⊂ I ′ so A(I) ⊂ A(I ′). Since A(J) is an
ideal of A(M) we have A(J)A(M) ⊂ A(J) ⊂ A(I ′) so A(J) ⊂ (A(I ′) : A(M)).
Now we need to show that (A(I ′) : A(M)) ⊂ A(J). Since (A(I ′) : A(M)) is an
ideal of A(M) so assume (A(I ′) : A(M)) = A(L) for some ideal L of M . On
the contrary assume A(L) is not a subset of A(J) therefore there exists x ∈ L
such that x /∈ J . Note that[

0 x
0 0

]
·
[
0 0
0 r(v, v)

]
=

[
0 [x, v, v]
0 0

]
∈ A(L)A(M) ⊂ A(I ′).

So [x, v, v] ∈ I ′ for all v ∈M which implies x ∈ (I ′ : M) = J , a contradiction.
(4) Suppose I is primitive so I = (I ′ : M) for some maximal modular ideal

I ′ of M . As I ′ is maximal modular so A(M) is also maximal modular. Also
by last part, A(I) = (A(I ′) : A(M)) so A(I) is primitive. Conversely, assume
that A(I) is modular so A(I) = (J : A(M)) for some maximal modular ideal
J of A(M). As J is maximal modular therefore J = A(I ′) for some maximal
modular ideal I ′ of M . So, A(I) = (A(I ′) : A(M)). Again using last part,
we have (A(I ′) : A(M)) = A(I ′ : M) so A(I) = A(I ′ : M) and therefore
I = (I ′ : M) so I is primitive. �

We say that a C∗-ternary ring M has the Wiener property if every proper
closed ideal of M is annihilated by some irreducible representation of M . By
Theorem 2.6, it is easy to see that every closed TRO ideal is contained in some
primitive ideal. Now we shall show that every C∗-ternary ring has Wiener
property. First we need a lemma:

Lemma 2.7. Let φ : M → N be a homomorphism of C∗-ternary rings. Then
Ker(A(φ)) = A(Ker(φ)).

Proof. Suppose x =
[
A f
g B

]
∈ Ker(A(φ)). Then L(φ)(A) = 0, φ(f) = 0, φ(g) =

0 and R(φ)(B) = 0 thus f and g belongs to Ker(φ). Note that φ(f ′ · B) = 0
for all f ′ ∈ M , that is, M Ker(R(φ)) ⊂ Ker(φ) so Ker(L(φ)) ⊂ L(Ker(φ)).
Similarly, Ker(R(φ)) ⊂ R(Ker(φ)) thus Ker(A(φ)) ⊂ A(Ker(φ)). On the other
hand, it is clear that A(Ker(φ)) ⊂ Ker(A(φ)). �

Theorem 2.8. Suppose M is a C∗-ternary ring and I is a closed ideal of M .
Then I is a primitive ideal of M if and only if I is kernel of some non-zero
irreducible representation of M .

Proof. Let I be a primitive ideal of M . As I is primitive therefore A(I) is
also a primitive ideal of A(M). Since A(M) is a C∗-algebra so A(I) is kernel
of some irreducible representation θ of A(M). By Proposition 2.2, we may
assume that θ = πφ for some representation φ : M → B(H,K). By the last
lemma, A(Ker(φ)) = Ker(θ) = A(I). Since Ker(φ) is a closed ideal of M , thus
I = Ker(φ).

Now conversely assume that I = Ker(φ), where φ is some nonzero irreducible
representation of M . Let π = πφ. By Proposition 2.2, π is irreducible and by
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the last lemma, ker(π) = A(I). As A(M) is a C∗-algebra so A(I) being kernel
of irreducible must be primitive and therefore I is primitive by Theorem 2.6.

�

Let I be an ideal of C∗-ternary ring M . Then M/I is also a C∗-ternary
ring. Following is an immediate consequence of the last theorem:

Corollary 2.9. Let M be a C∗-ternary ring and I be a closed ideal of M . Let
PrimI(M) and PrimI(M) be the sets of primitive ideals of M containing I and
not containing I, respectively. Then

(1) The map J → J/I is a homeomorphism of PrimI(M) onto Prim(M/I).
(2) The map J → J ∩ I is a homeomorphism of PrimI(M) onto Prim(I).

Proof. (1) It follows immediately from Theorem 2.8.
(2) Let J ∈ PrimI(M). Then J is kernel of an irreducible representation

φ of M such that φ(I) 6= 0. Since φ is irreducible, φ|I is also irreducible and
J ∩ I = Ker(φ|I) ∈ Prim(I) therefore the map J → J ∩ I is well defined. Now
assume J ′ ∈ Prim(I), then there exists an irreducible representation φ′ of I
such that J ′ = Ker(π′) so there is an irreducible representation φ of M such
that φ′ = φ|I and therefore J ′ = Ker(φ)∩ I. Finally, we need to show that the
map is injective. For this, suppose J1 ∩ I = J2 ∩ I. Applying the functor A,
we get A(J1) ∩ A(I) = A(J2) ∩ A(I) ⊂ A(J2). Note that

A(J1)A(I) = A(J1) ∩ A(I) ⊂ A(J2)

and A(J2) + A(I). Since J2 is primitive therefore A(J2) is primitive. Since
a primitive ideal is prime, A(J2) is prime and therefore A(J1) ⊂ A(J2) which
implies J1 ⊂ J2. Similarly, J2 ⊂ J1 so J1 = J2. It is routine to check that the
map is in fact a homeomorphism. �

Remark 2.10. We may define a C∗-ternary ring M to be primitive if its zero
ideal is primitive. By Theorem 2.8, M is primitive if and only if M has a
faithful nonzero irreducible representation. Moreover, M is primitive if and
only if A(M) is primitive. Recall that every nonzero simple C∗-algebra is
primitive and thus every nonzero simple C∗-ternary ring is also primitive but
converse need not be true. An easy counterexample is provided by B(H,K),
where H and K are infinite dimensional Hilbert spaces. Also, one can define an
ideal I of M to be essential if I intersects with every ideal of M non trivially. It
is easy to verify that I is essential if and only if ideal A(I) of A(M) is essential.

Let M be a C∗-ternary ring. We define strong center of M as

ZC∗-tring(M) = {x ∈M : [a, x, c] = [c, x, a] ∀a, c ∈M}.

Observe that if A is C∗-algebra and Z(A) denotes center of A, then using
approximate identity it is not difficult to see that ZC∗-tring(A) ⊂ Z(A) but in
general ZC∗-tring(A) may be much smaller than Z(A). For instance, if A = Mn

it is not difficult to see that ZC∗-tring(A) = {0} while Z(Mn) = cIn. This is
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the reason we call ZC∗-tring(M), a strong center of M . The following is an easy
consequence of the definition.

Proposition 2.11. The closed linear subspace ZC∗-tring(M) is a commutative
sub-C∗-ternary ring of M . Moreover, if M is commutative, then ZC∗-tring(M) =
M .

Definition. A C∗-ternary ring M is said to be strongly quasi-central if no
primitive ideal of M contains its strong center.

It is easy to verify that if A is a strongly quasi-central C∗-algebra, then A
is quasi central.

Definition. Let M be a C∗-ternary ring. A bounded net (eλ, fλ) is a left
(resp. right)-bounded approximate identity for M if there exists n > 0 such
that ||eλ|| ≤ n, ||fλ|| ≤ n and the net [eλ, fλ, x] (resp. the net [x, eλ, fλ])
converges to x, for all x ∈M .

Proposition 2.12. Let M be a C∗-ternary ring having an approximate iden-
tity each element of which belongs to ZC∗-tring(M). Then M is strongly quasi-
central. Conversely, if M is strongly quasi-central, then any bounded approxi-
mate identity of ZC∗-tring(M) is an approximate identity of M .

Proof. Let (eλ, fλ) be an approximate identity of M such that eλ∈ZC∗-tring(M)
and fλ ∈ ZC∗-tring(M) for all λ. Let P be a primitive ideal of M which
contains ZC∗-tring(M). Then for any x ∈ M we have [eλ, fλ, x] ∈ P and
x = limλ[eλ, fλ, x] ∈ P . Hence, P = M which is a contradiction. Thus,
M is strongly quasi-central.

Conversely, let (eλ, fλ) be an approximate identity of ZC∗-tring(M). Define

I = {x ∈M : lim
λ

[eλ, fλ, x] = x}.

Note that ZC∗-tring(M) ⊂ I and I is an ideal of M . Also since (eλ, fλ) is
bounded, I is closed. Now if (eλ, fλ) is not an approximate identity of M ,
then I 6= M so I is a proper ideal of M . Let P be a primitive ideal of M
which contains I and hence ZC∗-tring(M). Consequently, M is not strongly
quasi-central. �

3. Injective tensor product for TROs

In this section all our C∗-ternary rings are TROs. This section is devoted
to applications of results obtained in the previous section. Since for a TRO
V , A(V ) is ∗-isomorphic to A(V ) so we will identify A(V ) with A(V ). Given
TROs V ⊂ B(H1,K1) and W ⊂ B(H2,K2), there is a canonical triple product
on the algebraic tensor product V ⊗W given by

(v1 ⊗ w1)(v2 ⊗ w2)∗(v3 ⊗ w3) = v1v
∗
2v3 ⊗ w1w

∗
2w3.

We let V ⊗tminW denote the closure of V ⊗W in B(H1⊗H2,K1⊗K2). By the
very construction itself we see that V ⊗tmin W is a TRO. It is clear that if V
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and W are C∗-algebras, then V ⊗tmin W is also a C∗-algebra and is same as
V ⊗min W . For more details the reader is referred to [14]. It is worth noting
that if V is an exact TRO and B is an exact C∗-algebra, then V ⊗tmin B is
also an exact TRO.

Proposition 3.1. Let V1,W1, V2,W2 be TROs. Let fi : Vi → Wi be homo-
morphisms for i = 1, 2. Then f1⊗f2 continuously extends to a homomorphism
f1 ⊗ f2 : V1 ⊗tmin V2 → W1 ⊗tmin W2. Moreover, f1 ⊗ f2 is injective if f1 and
f2 are so.

Proof. By ([9], Proposition 3.4) each fi is a contraction. Also, for each n ∈ N,
(fi)n : Mn(Vi)→Mn(Wi) : [vi,j ]→ [fi(vi,j ]

is also a homomorphism, and thus is a contraction, so that fi is a complete
contraction. Since injective tensor product of operator spaces is injective ([6,
Proposition 8.1.5]) therefore f1⊗ f2 continuously extends by density to a com-
pletely bounded map f1⊗ f2 : V1⊗tmin V2 →W1⊗tminW2. The extended map
f1 ⊗ f2 is also a homomorphism. Moreover, if each fi is injective, then fi is a
complete isometry and therefore f1 ⊗ f2 is also a complete isometry. �

Proposition 3.2. Let I and J be ideals of TROs V and W , respectively. Then
I ⊗tmin J is an ideal of V ⊗tmin W .

Proof. Let i : I → V and j : J → W be natural embeddings. By above
proposition, we get an injective (complete isometric) homomorphism i ⊗ j :
I ⊗tmin J → V ⊗tmin W therefore, I ⊗tmin J can be treated as a sub-TRO of
V ⊗tmin W . Finally, using density result follows easily. �

Proposition 3.3. Let V and W be strongly quasi-central TROs. Then V ⊗tmin

W is also a strongly quasi-central TRO.

Proof. Using Proposition 2.12, let (aλ, bλ) and (cλ, dλ) be the central bounded
approximate identities of V and W , respectively. Note that each element of
the net (aλ⊗cλ, bλ⊗dλ) belongs to ZC∗-tring(V ⊗tminW ) and (aλ⊗cλ, bλ⊗dλ)
is an approximate identity of V ⊗tmin W . �

Let X be a locally compact Hausdorff topological space and V be a TRO.
Let f : X → V be a continuous function. Recall that f is said to vanish at
infinity if for each ε > 0, there exists a compact subset K of X such that
||f(x)|| < ε whenever x /∈ K. Denote,

C0(X,V ) := {f : X → V : f is continuous and vanishes at infinity}.
Let f1, f2 and f3 ∈ C0(X,V ). We define f1f

∗
2 f3(x) = f1(x)f2(x)∗f3(x). It is

easy to see that f1f
∗
2 f3 vanishes at infinity and therefore we get a map

C0(X,V )× C0(X,V )× C0(X,V )→ C0(X,V )

defined by
(f1, f2, f3)→ f1f

∗
2 f3.
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Let µ be a Borel measure with full support on X and V ⊂ B(H,K). Let
H ′ = L2(X,µ,H) and K ′ = L2(X,µ,K). For f ∈ C0(X,V ), let π(f) be the
operator acting as π(f)g(x) = f(x)g(x). Here g(x) ∈ H and f(x) ∈ V ⊂
B(H,K) and therefore f(x)g(x) ∈ K. As µ has full support therefore the map
π is an injective ∗-morphism. Thus C0(X,V ) is also a TRO. Also, note that
the map φ : A(C0(X,V ))→ C0(X,A(V )) defined by

φ

([
f1f
∗
2 f

g∗ f∗3 f4

])
(x) =

[
f1(x)f2(x)∗ f(x)

g(x)∗ f∗3 (x)f4(x)

]
is a ∗-isomorphism of C∗-algebras and therefore the linking C∗-algebra of
C0(X,V ) is C0(X,A(V )). Since C0(X,A(V )) is exact for exact TRO V thus
from ([14], Theorem 4.4) it follows that if V is exact, then C0(X,V ) is also
an exact TRO. For each x ∈ X, let Ix be an ideal of V . Then the set of
f ∈ C0(X,V ) satisfying f(x) ∈ Ix is an ideal of C0(X,V ). By Proposition 2.4,
it follows that every ideal of C0(X,M) has this form.

Proposition 3.4. Let X be a locally compact Hausdorff space and V a TRO.
Then C0(X) ⊗tmin V is a TRO isomorphic to C0(X,V ). In addition, if V is
separable, then Prim(C0(X,V )) is homeomorphic to X × Prim(V ).

Proof. By ([14], Proposition 2.2), it is enough to show that A(C0(X) ⊗tmin

V ) = C0(X)⊗minA(V ) is C∗-isomorphic to A(C0(X,V )) = C0(X,A(V )) which
follows from ([12], Proposition 1.5.6). If in addition V is separable, using
Theorem 2.6 and Proposition 2.4, we observe that

Prim(C0(X)⊗tmin V ) ∼= Prim(C0(X))× Prim(A(V )) ∼= X × Prim(V ),

where the first homeomorphism is obtained using ([3], Propositions 2.16, 2.17).
�

Proposition 3.5. Let V be a TRO and B a C∗-algebra.

(1) If V and B are simple, then V ⊗tmin B is a simple TRO.
(2) Every nonzero ideal of V ⊗tminB contains a nonzero elementary tensor.

Proof. (1) In view of ([14], Proposition 3.1) and Theorem 2.8, it suffices to
show that A(V )⊗min B is simple which follows from ([21], Corollary 4.21).

(2) Let I be an ideal of V ⊗tmin B so by ([14], Proposition 3.1) A(I) is an
ideal of A(V )⊗min B. By ([3], Lemma 2.12), A(I) has an elementary tensor so
assume [ p qr s ] ⊗b ∈ A(I) and therefore, we may assume 0 6= q ⊗ b ∈ I. �

Let Id’(V ) denote the set of proper closed ideals of V . For an ideal I of V ,
we denote by qI the quotient TRO-morphism of V onto V/I. Let V be a TRO
and B be a C∗-algebra. Consider the map Φ : Id(V )× Id(B)→ Id(V ⊗tmin B)
defined as

Φ(I, J) := Ker(qI ⊗ q2).

Proposition 3.6. The map Φ is a homeomorphism of Id’(V ) × Id’(B) onto
its image which is dense in Id’(V ⊗tmin B).
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Proof. By Proposition 2.4, θ × id : Id’(V )× Id’(B) → Id’(A(V ))× Id’(B) is a
homeomorphism. By ([15], Theorem 6), Φ is a homeomorphism of Id’(A(V ))×
Id’(B) onto its image which is dense in Id’(A(V )⊗min B). Rest of the proof is
clear by considering the following diagram:

Id′(V )× Id’(B) Id′(V ⊗tmin B)

Id′(A(V ))× Id’(B) Id′(A(V )⊗min B)

θ×id θ

Φ
�

Theorem 3.7. Let V be a topologically simple TRO and let B be a C∗-algebra.
If either V is exact or B is nuclear, then every closed TRO ideal of the TRO
V ⊗tmin B is a product ideal of the form V ⊗tmin J for some closed ideal J in
B.

Proof. Let I be a closed TRO ideal of V ⊗min B so A(I) is a closed ideal of
A(V ) ⊗min B. If V is exact, then A(V ) must be exact by [14] and therefore
A(I) must be of the form A(V ) ⊗min J for some closed ideal J in B. But by
([14], Proposition 3.1), A(V ⊗tmin J) = A(V ) ⊗min J so by Proposition 2.4,
I = V ⊗tmin J that is I is a product ideal. In case B in nuclear, the result
follows on the similar lines. �
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