CONTINUITY OF BANACH ALGEBRA VALUED FUNCTIONS

JITTISAK RAKBUD

ABSTRACT. Let K be a compact Hausdorff space, $\mathscr A$ a commutative complex Banach algebra with identity and $\mathscr C(\mathscr A)$ the set of characters of $\mathscr A$. In this note, we study the class of functions $f:K\to\mathscr A$ such that $\Omega_\mathscr A\circ f$ is continuous, where $\Omega_\mathscr A$ denotes the Gelfand representation of $\mathscr A$. The inclusion relations between this class, the class of continuous functions, the class of bounded functions and the class of weakly continuous functions relative to the weak topology $\sigma(\mathscr A,\mathscr C(\mathscr A))$, are discussed. We also provide some results on its completeness under the norm defined by $\|\|f\|\| = \|\Omega_\mathscr A\circ f\|_\infty$.

1. Introduction and preliminaries

A complex algebra \mathscr{A} is called a normed algebra if \mathscr{A} is in addition a normed space together with the property that $||xy|| \leq ||x|| ||y||$ for all $x, y \in \mathscr{A}$. A normed algebra is called a normed algebra with identity or a unital normed algebra if the sthe identity of norm 1. A normed algebra becomes a Banach algebra if the norm is a complete norm. A class of Banach algebras which plays a key role in mathematical analysis is the class of Banach algebras of continuous complex-valued functions on compact Hausdorff spaces. We will generally discuss those algebras as follows. Let K be a compact Hausdorff space and \mathcal{X} a Banach space with the dual \mathcal{X}^* . Let $C(K, \mathcal{X})$ be the set of continuous functions from K into \mathcal{X} . For the case where $\mathcal{X} = \mathbb{C}$, the set $C(K, \mathbb{C})$ will be denoted by just C(K). By the compactness of K, we have for any $f \in C(K, \mathcal{X})$ that $||f||_{\infty} = \sup_{t \in K} ||f(t)|| < \infty$. It is well known that $C(K, \mathcal{X})$ equipped with the norm $||\cdot||_{\infty}$ is a Banach space (see [3], Example 1.7.2, page 49). If, in addition, \mathcal{X} is a Banach algebra, then so is $C(K, \mathcal{X})$ under the usual

equipped with the norm $\|\cdot\|_{\infty}$ is a Banach space (see [3], Example 1.7.2, page 49). If, in addition, \mathcal{X} is a Banach algebra, then so is $C(K, \mathcal{X})$ under the usual multiplication. For any subset \mathscr{F} of the dual \mathcal{X}^* of \mathcal{X} separating points of \mathcal{X} in the sense that for each non-zero element $x \in \mathcal{X}$, there is a $\rho \in \mathscr{F}$ such that $\rho(x) \neq 0$, let $\sigma(\mathcal{X}, \mathscr{F})$ be the weak topology on \mathcal{X} induced by \mathscr{F} , and let $C^{\mathscr{F}}(K, \mathcal{X})$ be the set of continuous functions from K into $(\mathcal{X}, \sigma(\mathcal{X}, \mathscr{F}))$, which

Received April 22, 2014; Revised August 13, 2014. 2010 Mathematics Subject Classification. Primary 46E40; Secondary 46E15. Key words and phrases. Banach algebra, Gelfand representation, character.

are called weakly continuous functions relative to the weak topology $\sigma(\mathcal{X}, \mathscr{F})$. It is well known that (see [3], Proposition 1.3.2, page 29) $C^{\mathscr{F}}(K, \mathcal{X})$ is precisely the set of functions $f: K \to \mathcal{X}$ such that $\varphi f \in C(K)$ for all $\varphi \in \mathscr{F}$. Thus $C(K, \mathcal{X}) \subseteq C^{\mathscr{F}}(K, \mathcal{X})$. For the case of the weak topology on \mathcal{X} , i.e., $\mathscr{F} = \mathcal{X}^*$, we denote the set of weakly continuous functions from K into \mathcal{X} by $C^w(K, \mathcal{X})$. By the closed graph theorem, the norm $\|\cdot\|_{\infty}$ can be defined and is a Banach norm on $C^w(K, \mathcal{X})$. However, $C^w(K, \mathcal{X})$ may not be closed under the usual multiplication when \mathcal{X} is a Banach algebra, except for the case where K is finite.

For any normed algebra \mathscr{A} , the set of *characters*, i.e., non-zero multiplicative linear functionals, of \mathscr{A} is denoted by $\mathscr{C}(\mathscr{A})$. A multiplicative linear operator from an algebra \mathscr{A} into an algebra \mathscr{B} is called a *homomorphism* from \mathscr{A} into \mathscr{B} . A homomorphism from a normed algebra \mathscr{A} into a normed algebra \mathscr{B} is called an *isomorphism* if it is in addition a homeomorphism from \mathscr{A} onto \mathscr{B} . A surjective homomorphism T from a normed algebra \mathscr{A} into a normed algebra \mathscr{B} is called an *isometric isomorphism* if it satisfies the property that ||Tx|| = ||x|| for all $x \in \mathscr{A}$. Obviously, every isometric isomorphism is an isomorphism.

Let \mathscr{A} be a commutative Banach algebra with identity. It is well known that $\mathscr{C}(\mathscr{A}) \neq \emptyset$ (see [1], Theorem 2.35, page 41), and that every character of \mathscr{A} is continuous and has the norm equal to 1 (see [1], Proposition 2.22, page 36). It is also known that $\mathscr{C}(\mathscr{A})$ equipped with the topology relative to the weak* topology on \mathscr{A}^* is a compact Hausdorff space (see [1], Proposition 2.23, page 36). For each $x \in \mathscr{A}$, the spectrum of x denoted by $\sigma(x)$ is the set of complex numbers λ such that $x - \lambda$ is not invertible. It is well known that $\sigma(x)$ is a nonempty compact subset of \mathbb{C} (see [1], Proposition 2.28 and Theorem 2.29, page 38), and that $\sigma(x) = \{\rho(x) : \rho \in \mathscr{C}(\mathscr{A})\}$ for all $x \in \mathscr{A}$ (see [1], Corollary 2.36, page 41). Thus, for each $x \in \mathscr{A}$, the real number $r(x) := \sup_{\lambda \in \sigma(x)} |\lambda|$,

which is called the spectral radius of x, is well-defined. The Gelfand transform of each $x \in \mathscr{A}$ is the continuous complex-valued function \widehat{x} on $\mathscr{C}(\mathscr{A})$, under the relative weak* topology, which is defined by $\varphi \mapsto \varphi(x)$. It is evident that for each $x \in \mathscr{A}$, $r(x) = \|\widehat{x}\|_{\infty} \leq \|x\|$. The Gelfand representation of \mathscr{A} denoted by $\Omega_{\mathscr{A}}$ is the bounded homomorphism from \mathscr{A} into $C(\mathscr{C}(\mathscr{A}))$ defined by $x \mapsto \widehat{x}$. Notice that if the Gelfand representation of \mathscr{A} is injective, then $\mathscr{C}(\mathscr{A})$ separates points of \mathscr{A} . Whence, in this situation, we obtain that every continuous function $f: K \to \mathscr{A}$, where K is a compact Hausdorff space, is a weakly continuous function relative to the weak topology $\sigma(\mathscr{A}, \mathscr{C}(\mathscr{A}))$, that is, $C(K,\mathscr{A}) \subseteq C^{\mathscr{C}(\mathscr{A})}(K,\mathscr{A})$. By the bounded inverse theorem, we have that the Gelfand representation of a commutative Banach algebra with identity is an isomorphism if and only if it is bijective. The following is a sufficient condition for the Gelfand representation of a commutative Banach algebra with identity to be an isomorphism. It was provided in [2] by W. Fupinwong and S. Dhompongsa as a preliminary.

Theorem 1.1 ([2], Lemma 4.1, page 12). For any commutative Banach algebra \mathscr{B} with identity, if $\inf\{\|\widehat{x}\|_{\infty}: x \in \mathscr{B}, \|x\| = 1\} > 0$ and \mathscr{B} satisfies the following property:

(*) for each $x \in \mathcal{B}$, there exists a $y \in \mathcal{B}$ such that $\varphi(x) = \overline{\varphi(y)}$ for all $\varphi \in \mathcal{C}(\mathcal{B})$,

then the Gelfand representation of \mathcal{B} is an isomorphism.

For any commutative Banach algebra \mathscr{B} with identity, it is clear that the condition that $\inf\{\|\widehat{x}\|_{\infty}:x\in\mathscr{B},\|x\|=1\}>0$ implies the injectivity of the Gelfand representation of \mathscr{B} , which is equivalent to the semi-simplicity of \mathscr{B} . The converse of this statement is not true (see Remark 2.12). It is also clear that the condition (\star) is equivalent to the closedness of the subalgebra $\Omega_{\mathscr{B}}(\mathscr{B})$ of $C(\mathscr{C}(\mathscr{B}))$ under the complex conjugation. Notice that every commutative C^* -algebra with identity satisfies the two conditions of the above theorem. Moreover, its Gelfand representation is an isometric *-isomorphism (see [3], Theorem 4.4.3, page 270).

For any compact Hausdorff spaces X and Y, it is well known that C(X, C(Y)) is isometrically isomorphic to C(Y, C(X)) by the isomorphism defined by $f \mapsto \widetilde{f}$, where \widetilde{f} is a function from Y into C(X) such that $\widetilde{f}(y)$ is given by $x \mapsto f(y)(x)$ (see for more details [4], page 849). From this fact, it is not hard to see that for each function f from a compact Hausdorff space K into a commutative Banach algebra $\mathscr A$ with identity, the following two conditions are equivalent:

- (C_1) $\Omega_{\mathscr{A}} \circ f$ is continuous.
- (C_1') $\varphi \circ f$ is continuous for all $\varphi \in \mathscr{C}(\mathscr{A})$ and the function $\Psi_f^{(\mathscr{A},K)}$ from $\mathscr{C}(\mathscr{A})$, along with the topology relative to the weak* topology on \mathscr{A}^* , into C(K) defined by $\Psi_f^{(\mathscr{A},K)}(\varphi) = \varphi \circ f$ for all $\varphi \in \mathscr{C}(\mathscr{A})$ is continuous.

And in these two situations, we have $\|\Omega_{\mathscr{A}} \circ f\|_{\infty} = \left\|\Psi_f^{(\mathscr{A},K)}\right\|_{\infty}$. In this note, we deal mainly with the classes of continuous functions and

In this note, we deal mainly with the classes of continuous functions and functions satisfying the condition (C_1) , from a compact Hausdorff space into a commutative Banach algebra with identity.

2. Results

In the entire contents of this section, let K and \mathscr{A} be respectively a compact Hausdorff space and a commutative Banach algebra with identity which are arbitrarily fixed. In addition, the set $\mathscr{C}(\mathscr{A})$ of characters of \mathscr{A} will be considered as a topological space equipped with the topology relative to the weak* topology on \mathscr{A}^* . Recall that $\Omega_{\mathscr{A}}$ denotes the Gelfand representation of \mathscr{A} .

Let $C_1(K, \mathscr{A})$ and $C_1^b(K, \mathscr{A})$ be the sets of functions and bounded functions from K into \mathscr{A} respectively which satisfy the condition (C_1) . The inclusion relations among the three sets $C(K, \mathscr{A})$, $C_1^b(K, \mathscr{A})$ and $C_1(K, \mathscr{A})$ are as follows.

Theorem 2.1. $C(K, \mathscr{A}) \subseteq C_1^b(K, \mathscr{A}) \subseteq C_1(K, \mathscr{A})$.

Proof. Since K is compact, it follows easily that $C(K, \mathscr{A}) \subseteq C_1^b(K, \mathscr{A})$.

Note that by the equivalence of the two conditions (C_1) and (C'_1) mentioned above, we obtain in addition for the case where the Gelfand representation of \mathscr{A} is injective that $C_1(K,\mathscr{A}) \subseteq C^{\mathscr{C}(\mathscr{A})}(K,\mathscr{A})$. It is clear that a sufficient condition which implies $C(K,\mathscr{A}) = C_1^b(K,\mathscr{A}) = C_1(K,\mathscr{A})$ is that the Gelfand representation of \mathscr{A} is an isomorphism. We will see later that in this situation the inclusion $C_1(K,\mathscr{A}) \subseteq C^{\mathscr{C}(\mathscr{A})}(K,\mathscr{A})$ can still be proper.

Theorem 2.2. If the Gelfand representation of \mathscr{A} is an isomorphism, then $C(K,\mathscr{A}) = C_1^b(K,\mathscr{A}) = C_1(K,\mathscr{A}).$

Another condition which also implies the three sets $C(K, \mathscr{A})$, $C_1^b(K, \mathscr{A})$ and $C_1(K, \mathscr{A})$ to be equal is that $\inf\{\|\widehat{x}\|_{\infty} : x \in \mathscr{A}, \|x\| = 1\} > 0$. To prove this, we need the following lemma.

Lemma 2.3. Suppose that $\inf\{\|\widehat{x}\|_{\infty}: x \in \mathscr{A}, \|x\|=1\} > 0$ and $0 < \delta < \inf\{\|\widehat{x}\|_{\infty}: x \in \mathscr{A}, \|x\|=1\}$. Then for any $a \in \mathscr{A}, \|\widehat{a}\|_{\infty} < \delta^2$ implies $\|a\| < \delta$.

Proof. Suppose to the contrary that $\|\widehat{a}\|_{\infty} < \delta^2$, but $\|a\| \ge \delta$. Then $\frac{1}{\|a\|} \le \frac{1}{\delta}$. Thus

$$0 < \delta < \inf\{\|\widehat{x}\|_{\infty} : x \in \mathscr{A}, \|x\| = 1\} \le \left\| \widehat{\left(\frac{a}{\|a\|}\right)} \right\|_{\infty} < \delta,$$

which is a contradiction. So we obtain that $\|\widehat{a}\|_{\infty} < \delta^2$ implies $\|a\| < \delta$ as required.

Theorem 2.4. If $\inf\{\|\widehat{x}\|_{\infty}: x \in \mathscr{A}, \|x\| = 1\} > 0$, then $C(K, \mathscr{A}) = C_1^b(K, \mathscr{A}) = C_1(K, \mathscr{A})$.

Proof. Suppose that $\inf\{\|\widehat{x}\|_{\infty}: x \in \mathscr{A}, \|x\| = 1\} > 0$. Since $C(K, \mathscr{A}) \subseteq C_1^b(K, \mathscr{A}) \subseteq C_1(K, \mathscr{A})$, it suffices to show only that $C(K, \mathscr{A}) = C_1(K, \mathscr{A})$. Let $f \in C_1(K, \mathscr{A})$. To get that $f \in C(K, \mathscr{A})$, let $s \in K$ and $\epsilon > 0$. Then by the continuity of $\Omega_{\mathscr{A}} \circ f$, there is an open neighborhood V of s such that

$$\left\|\widehat{f(s)} - \widehat{f(t)}\right\|_{\infty} < \beta^2 \text{ for all } t \in V,$$

where $\beta = \frac{\min\{\epsilon, \inf\{\|\widehat{x}\|_{\infty} : x \in \mathscr{A}, \|x\| = 1\}\}}{2}$. Thus, by Lemma 2.3,

$$||f(s) - f(t)|| < \beta \le \frac{\epsilon}{2} < \epsilon \text{ for all } t \in V.$$

This yields the continuity of f.

The following example shows that there are a commutative Banach algebra \mathscr{B} with identity and a compact Hausdorff space E such that the Gelfand representation of \mathscr{B} is injective but not surjective, and the inclusions $C(E,\mathscr{B}) \subseteq C_1^b(E,\mathscr{B}) \subseteq C_1(E,\mathscr{B}) \subseteq C^{\mathscr{C}(\mathscr{B})}(E,\mathscr{B})$ are all proper.

Example 2.5. Consider the unitization $(l^2)_e$ of the Hilbert space l^2 , i.e., $(l^2)_e := \mathbb{C} \oplus l^2$ along with the norm $\|(\lambda, \{x_k\}_{k=1}^\infty)\| := |\lambda| + \|\{x_k\}_{k=1}^\infty\|_2$ and the multiplication defined by $(\lambda, \{x_k\}_{k=1}^\infty)(\gamma, \{y_k\}_{k=1}^\infty) = (\lambda \gamma, \lambda \{y_k\}_{k=1}^\infty) + \{x_k y_k\}_{k=1}^\infty$ for all $(\lambda, \{x_k\}_{k=1}^\infty), (\gamma, \{y_k\}_{k=1}^\infty) \in \mathbb{C} \oplus l^2$. Here, for any $\lambda \in \mathbb{C}$ and $\{x_k\}_{k=1}^\infty = l^2$, we write $(\lambda, 0) = \lambda$ and $(0, \{x_k\}_{k=1}^\infty) = \{x_k\}_{k=1}^\infty$. Hence every $(\lambda, \{x_k\}_{k=1}^\infty) \in \mathbb{C} \oplus l^2 = (l^2)_e$ can be written in a form of addition as follows: $(\lambda, \{x_k\}_{k=1}^\infty) = \lambda + \{x_k\}_{k=1}^\infty$. For each integer $n \geq 1$, let $\varphi_n : (l^2)_e \to \mathbb{C}$ be defined by $\varphi_n (\lambda + \{x_k\}_{k=1}^\infty) = \lambda + x_n$ for all $\lambda + \{x_k\}_{k=1}^\infty = (l^2)_e$, and let $\varphi_0 : (l^2)_e \to \mathbb{C}$ be defined by $\varphi_0 (\lambda + \{x_k\}_{k=1}^\infty) = \lambda$ for all $\lambda + \{x_k\}_{k=1}^\infty = (l^2)_e$. Then $\varphi_n \in \mathscr{C}((l^2)_e)$ for all $n \geq 0$. First of all, we need that $\mathscr{C}((l^2)_e) = \{\varphi_n : n = 0, 1, 2, \ldots\}$, and that the Gelfand representation of $(l^2)_e$ is injective but not surjective. We do not know whether these results are well known. For completeness and self-containedness of the contents in this example, we will prove them again. Let $\varphi \in \mathscr{C}((l^2)_e)$. If $\varphi = \varphi_0$, then we are done. Suppose that $\varphi \neq \varphi_0$. Let $\{e_n\}_{n=1}^\infty$ be the standard orthonormal basis for l^2 , and let $\xi_n = \varphi(e_n)$ for all n. Since, for each n, we have $\xi_n = \varphi(e_n) = \varphi(e_n^2) = \varphi(e_n^2) = (\xi_n)^2$, it follows that ξ_n is either 0 or 1. Furthermore, if $n \neq k$, then $\xi_n + \xi_k$ is either 0 or 1 as well, due to the fact that $\xi_n + \xi_k = \varphi(e_n + e_k) = \varphi((e_n + e_k)^2) = \varphi(e_n + e_k)^2 = (\xi_n + \xi_k)^2$. From these, we obtain that if $\xi_n \neq 0$ for some n, then ξ_k must be 0 for all $k \neq n$. Since $\varphi \neq \varphi_0$, we have that the restriction of φ on l^2 is not zero, which implies that there is a sequence $\{y_n\}_{n=1}^\infty \in l^2$ such that

$$\sum_{n=1}^{\infty} y_n \xi_n = \varphi\left(\sum_{n=1}^{\infty} y_n e_n\right) = \varphi(\{y_n\}_{n=1}^{\infty}) \neq 0.$$

Thus there exists a positive integer n such that $\xi_n \neq 0$. This yields that $\xi_n = 1$ and $\xi_k = 0$ for all $k \neq n$. Hence, for any $\lambda + \{x_k\}_{k=1}^{\infty} \in (l^2)_e$, we have

$$\varphi(\lambda + \{x_k\}_{k=1}^{\infty}) = \lambda + \varphi(\{x_k\}_{k=1}^{\infty}) = \lambda + \varphi\left(\sum_{k=1}^{\infty} e_k x_k\right)$$
$$= \lambda + \sum_{k=1}^{\infty} x_k \xi_k = \lambda + x_n$$
$$= \varphi_n(\lambda + \{x_k\}_{k=1}^{\infty}).$$

That is, $\varphi = \varphi_n$. Therefore, we obtain $\mathscr{C}\left((l^2)_e\right) = \{\varphi_n : n = 0, 1, 2, \ldots\}$ as required. Notice that φ_0 is the only limit point of $\mathscr{C}\left((l^2)_e\right)$. Indeed, for each $n \geq 1$, the set

$$V_n = \left\{ \varphi \in \mathscr{C}\left((l^2)_e \right) : |\varphi(e_n) - \varphi_n(e_n)| < 1 \right\}$$

is an open neighborhood of φ_n in $\mathscr{C}\left((l^2)_e\right)$ which doesn't contain all other elements of $\mathscr{C}\left((l^2)_e\right)$, and for any $\Theta=\lambda+\{x_k\}_{k=1}^\infty\in(l^2)_e,\,|\varphi_n(\Theta)-\varphi_0(\Theta)|=|x_n|\to 0$. Next, we will show that the Gelfand representation of $(l^2)_e$ is injective but not surjective. To see that the Gelfand representation of $(l^2)_e$ is injective,

let $\Theta = \lambda + \{x_k\}_{k=1}^{\infty} \in (l^2)_e$, and suppose that $\widehat{\Theta} = 0$. Then $\varphi_n(\Theta) = 0$ for all $n \geq 0$. Since $\varphi_0(\Theta) = 0$, we have $\lambda = 0$. Thus $\Theta = \{x_k\}_{k=1}^{\infty}$. Since for every $n \geq 1$, $\varphi_n(\{x_k\}_{k=1}^{\infty}) = \varphi_n(\Theta) = 0$, it follows that $x_n = 0$ for all n. Thus $\Theta = 0$. To get that the Gelfand representation of $(l^2)_e$ is not surjective, let $f: \mathscr{C}\left((l^2)_e\right) \to \mathbb{C}$ be defined by $f(\varphi_n) = \frac{1}{\sqrt{n}}$ for all $n \geq 1$ and $f(\varphi_0) = 0$. We claim that f is continuous and $f \neq \widehat{\Theta}$ for all $\Theta \in (l^2)_e$. By the note above, it is clear that f is continuous at φ_n for all $n \geq 1$. To see that f is continuous at φ_0 , let $\epsilon > 0$ be given. Then there is a positive integer N such that $\frac{1}{n} < \epsilon^2$ for all $n \geq N$. Let $U = \{\varphi_n : n \geq N\} \cup \{\varphi_0\}$. Then, by the fact that $\mathscr{C}\left((l^2)_e\right)$ is a Hausdorff space, we get that U is an open neighborhood of φ_0 in $\mathscr{C}\left((l^2)_e\right)$. Since $|f(\varphi_n) - f(\varphi_0)| = |f(\varphi_n)| = \frac{1}{\sqrt{n}} < \epsilon$ for all $n \geq N$, it follows that f is continuous at φ_0 . Hence f is continuous. If $\Theta = \lambda + \{x_k\}_{k=1}^{\infty} \in (l^2)_e$ and $\widehat{\Theta} = f$, then $\lambda = \varphi_0(\Theta) = \widehat{\Theta}(\varphi_0) = f(\varphi_0) = 0$ and $x_n = \varphi_n(\Theta) = \widehat{\Theta}(\varphi_n) = f(\varphi_n) = \frac{1}{\sqrt{n}}$ for all $n \geq 1$. It follows that $\Theta = \{\frac{1}{\sqrt{k}}\}_{k=1}^{\infty}$, which is impossible since $\{\frac{1}{\sqrt{k}}\}_{k=1}^{\infty}$ doesn't belong to l^2 . Hence $\widehat{\Theta} \neq f$ for all $\Theta \in (l^2)_e$. Therefore, the Gelfand representation of $(l^2)_e$ is not surjective.

Let

$$E = \left\{ \frac{1}{n} : n = 1, 2, 3, \dots \right\} \cup \{0\}$$

be equipped with the topology relative to the usual topology on the set of real numbers. Then E is a compact Hausdorff space. We now turn our attention to confirm that the inclusions

$$C(E,(l^2)_e) \subseteq C_1^b(E,(l^2)_e) \subseteq C_1(E,(l^2)_e) \subseteq C^{\mathscr{C}((l^2)_e)}(E,(l^2)_e)$$

are all proper.

We will begin with proving that $C(E,(l^2)_e) \subsetneq C_1^b(E,(l^2)_e)$. To show this, let $f: E \to (l^2)_e$ be defined by

$$f(x) = \left\{ \begin{cases} \underbrace{\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}}_{n \text{ terms}}, 0, 0, \dots \end{cases} & \text{if } x = \frac{1}{n} \text{ for some } n, \\ 0 & \text{if } x = 0. \end{cases}$$

For each $n \geq 1$, we have

$$\left\| f\left(\frac{1}{n}\right) - f(0) \right\| = \left\| f\left(\frac{1}{n}\right) \right\| = \left\| \left\{ \underbrace{\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}}_{n \text{ terms}}, 0, 0, \dots \right\} \right\|_{2} = 1.$$

From this, we get that f is bounded, and that $f\left(\frac{1}{n}\right) \nrightarrow f(0)$ in $(l^2)_e$, which yields the discontinuity of f. So $f \notin C(E,(l^2)_e)$. To show that $\Omega_{(l^2)_e} \circ f$ is

continuous, from the fact that 0 is the only limit point of E in E itself, it suffices to prove just that $\Omega_{(l^2)_e} \circ f$ is continuous at 0. Let $\epsilon > 0$ be given. Then there is a positive integer N such that $\frac{1}{k} < \frac{\epsilon}{4}^2$ for all $k \geq N$. Let $W = \left\{\frac{1}{k} : k \geq N\right\} \cup \{0\}$. Then W is an open neighborhood of 0 in E. Notice that for every $n \geq 1$, we have that the function $\varphi_n \circ f : E \to \mathbb{C}$ is determined by

$$\varphi_n \circ f\left(\frac{1}{k}\right) = \varphi_n\left(f\left(\frac{1}{k}\right)\right) = \begin{cases} 0 & \text{if } k < n, \\ \frac{1}{\sqrt{k}} & \text{if } k \ge n, \end{cases}$$

and $\varphi_0 \circ f = 0$. Let $n \ge 1$ and $k \ge N$. If n > k, then

$$\left| \varphi_n \left(f \left(\frac{1}{k} \right) \right) \right| = 0 < \frac{\epsilon}{2}.$$

If $n \leq k$, then

$$\left| \varphi_n \left(f \left(\frac{1}{k} \right) \right) \right| = \frac{1}{\sqrt{k}} < \frac{\epsilon}{2}.$$

It follows that

$$\|\Omega_{(l^{2})_{e}} \circ f(x) - \Omega_{(l^{2})_{e}} \circ f(0)\|_{\infty} = \|\widehat{f(x)} - \widehat{f(0)}\|_{\infty} = \|\widehat{f(x)}\|_{\infty}$$

$$= \sup_{n \geq 0} |\varphi_{n}(f(x))|$$

$$< \epsilon \quad \text{for all } x \in W.$$

Whence the function $\Omega_{(l^2)_e} \circ f$ is continuous. Previously, it has already been shown that f is bounded. Therefore, $f \in C_1^b((l^2)_e, E)$.

Next, we will show that $C_1^b(E,(l^2)_e) \subsetneq C_1(E,(l^2)_e)$. Let $g: E \to (l^2)_e$ be defined by

$$g(x) = \left\{ \underbrace{\frac{1}{n^{1/3}}, \frac{1}{n^{1/3}}, \dots, \frac{1}{n^{1/3}}}_{n \text{ terms}}, 0, 0, \dots \right\} \quad \text{if } x = \frac{1}{n} \text{ for some } n,$$

$$0 \qquad \qquad \text{if } x = 0.$$

Then for each $n \geq 1$, we have

$$\left\| g\left(\frac{1}{n}\right) \right\| = \left\| \left\{ \underbrace{\frac{1}{n^{1/3}}, \frac{1}{n^{1/3}}, \dots, \frac{1}{n^{1/3}}}_{n \text{ terms}}, 0, 0, \dots \right\} \right\|_{2} = n^{1/6}.$$

Thus g is unbounded. By an argument similar to that for proving the continuity of $\Omega_{(l^2)_e} \circ f$, the continuity of $\Omega_{(l^2)_e} \circ g$ is obtained. Hence we get $C_1^b(E,(l^2)_e) \subsetneq C_1(E,(l^2)_e)$ as required.

Finally, we will prove that $C_1(E,(l^2)_e) \subsetneq C^{\mathscr{C}((l^2)_e)}(E,(l^2)_e)$. Let $h: E \to (l^2)_e$ be defined by

$$h(x) = \left\{ \begin{cases} \underbrace{0, 0, \dots, 0}_{n \text{ terms}}, 1, 0, 0, \dots \end{cases} & \text{if } x = \frac{1}{n} \text{ for some } n, \\ 0 & \text{if } x = 0. \end{cases}$$

Then for each $n \geq 1$, the function $\varphi_n \circ h : E \to \mathbb{C}$ is determined by

$$\varphi_n \circ h\left(\frac{1}{k}\right) = \varphi_n\left(h\left(\frac{1}{k}\right)\right) = \begin{cases} 0 & \text{if } k+1 \neq n, \\ 1 & \text{if } k+1 = n, \end{cases}$$

and $\varphi_0 \circ h = 0$. This yields that $\varphi_n \circ h$ is continuous for all $n \geq 0$. So $h \in C^{\mathscr{C}((l^2)_e)}(E,(l^2)_e)$. It is apparent for every $x \in E$ with $x \neq 0$ that

$$\left\|\Omega_{(l^2)_e}\circ h(x)-\Omega_{(l^2)_e}\circ h(0)\right\|_{\infty}=\left\|\widehat{h(x)}\right\|_{\infty}=\sup_{n\geq 0}\lvert\varphi_n(h(x))\rvert=1.$$

This implies that $\Omega_{(l^2)_e} \circ h$ is not continuous. Consequently, $h \notin C_1(E, (l^2)_e)$.

If the Gelfand representation $\Omega_{\mathscr{A}}$ of \mathscr{A} is an isomorphism, then by Theorem 2.2 and the injectivity of $\Omega_{\mathscr{A}}$, we have that

$$C(K, \mathscr{A}) = C_1^b(K, \mathscr{A}) = C_1(K, \mathscr{A}) \subset C^{\mathscr{C}(\mathscr{A})}(K, \mathscr{A}).$$

The following example shows that in this situation the two sets $C_1(K, \mathscr{A})$ and $C^{\mathscr{C}(\mathscr{A})}(K, \mathscr{A})$ may not be equal.

Example 2.6. In this example, we consider the commutative C^* -algebra with identity C[0,1] of continuous complex valued functions on [0,1] and the Alexandroff one-point compactification of $[1,\infty)$ which is denoted by $[1,\infty]$. Let $f:[1,\infty]\to C[0,1]$ be defined by $f(r)=f_r$ for all $r\in[1,\infty]$, where for any $r\in[1,\infty)$, $f_r:[0,1]\to\mathbb{R}$ is defined by $f_r(t)=\frac{rt}{1+r^2t^2}$ for all $t\in[0,1]$, and $f_\infty=0$. For each $t\in[0,1]$, we have $\delta_t\circ f(r)=\delta_t(f_r)=f_r(t)=\frac{rt}{1+r^2t^2}$ for all $r\in[1,\infty)$, where $\delta_t\in \mathscr{C}(C[0,1])$ which is the point evaluation at $t\in[0,1]$. Since $\lim_{r\to\infty} f_r(t)=0=f_\infty(t)$ for all $t\in[0,1]$, it follows that $\delta_t\circ f$ is continuous on $[1,\infty]$ for all $t\in[0,1]$. It is easy to check that $\|f_r\|_\infty=\frac12$ for all $r\in[1,\infty)$. From this, we obtain that $\|f_n-f_\infty\|_\infty=\|f_n\|_\infty=\frac12$ for all positive integer n. It follows that $\|f_n-f_\infty\|_\infty \to 0$. Thus f is not continuous.

It is easy to see that $C_1(K, \mathscr{A})$ is an algebra containing both $C(K, \mathscr{A})$ and $C_1^b(K, \mathscr{A})$ as subalgebras. We next investigate the completeness of these three algebras under the norm $\|\cdot\|$ on $C_1(K, \mathscr{A})$ defined naturally by

$$|||f||| := ||\Omega_{\mathscr{A}} \circ f||_{\infty} = \sup_{t \in K} ||\widehat{f(t)}||_{\infty}.$$

Notice that $|||f|| \le ||f||_{\infty}$ for all $f \in C_1^b(K, \mathscr{A})$.

Proposition 2.7. The vector space $C_1(K, \mathscr{A})$ equipped with the norm $\|\cdot\|$ is a normed space if and only if the Gelfand representation of \mathscr{A} is injective. In this case, the normed space $(C_1(K, \mathscr{A}), \|\cdot\|)$ is furthermore a normed algebra.

Proof. Suppose that the Gelfand representation of \mathscr{A} is injective. We will show that the function $\|\cdot\|$ is precisely a norm on $C_1(K, \mathscr{A})$. It is clear that $\|\lambda f\| =$ $|\lambda| |||f|||$ and $||f+g|| \le |||f||| + ||g||$ for all $f, g \in C_1(K, \mathscr{A})$ and $\lambda \in \mathbb{C}$, and that |||0||| = 0. We need to show that |||f||| = 0 implies f = 0 for all $f \in C_1(K, \mathscr{A})$. Let $f \in C_1(K, \mathscr{A})$, and assume that ||f|| = 0. Then $||\widehat{f(t)}||_{\infty} = 0$ for all $t \in K$. This gives us that f(t) = 0 for all $t \in K$. So, by the injectivity of the Gelfand representation of \mathscr{A} , we have for each $t \in K$ that f(t) = 0, which yields f=0. Thus the vector space $C_1(K,\mathscr{A})$ equipped with the norm $\|\cdot\|$ is a normed space. It is obvious that $fg \in C_1(K, \mathscr{A})$ and $||fg|| \le |||f|| ||g||$ for all $f, g \in C_1(K, \mathscr{A})$. Hence $(C_1(K, \mathscr{A}), \|\|\cdot\|\|)$ is in addition a normed algebra. Conversely, suppose that $(C_1(K, \mathscr{A}), \|\|\cdot\|\|)$ is a normed space. To prove that the Gelfand representation of \mathscr{A} is injective, let $a \in \mathscr{A}$, and suppose that $\hat{a} = 0$. Let $f: K \to \mathscr{A}$ be defined by f(t) = a for all $t \in K$. It is clear that f is continuous. Since $||f|| = ||\hat{a}||_{\infty} = 0$, it follows by the assumption that f = 0. Therefore, by the definition of f, we have a = 0.

Lemma 2.8. If the Gelfand representation of \mathscr{A} is an isomorphism, then the two norms $\|\cdot\|_{\infty}$ and $\|\cdot\|$ on $C(K,\mathscr{A})$ (= $C_1^b(K,\mathscr{A}) = C_1(K,\mathscr{A})$) are equivalent.

Proof. Since the Gelfand representation of \mathscr{A} is an isomorphism, there is a c > 0 such that $||x|| \le c ||\widehat{x}||_{\infty}$ for all $x \in \mathscr{A}$, and we obtain by Proposition 2.7 that $|||\cdot|||$ is a norm on $C(K,\mathscr{A})$. Hence, for any $f \in C(K,\mathscr{A})$,

$$\|f\|_{\infty} = \sup_{t \in K} \|f(t)\| \le c \left(\sup_{t \in K} \left\| \widehat{f(t)} \right\|_{\infty} \right) = c \|f\|.$$

So, by the fact that $|||f||| \le ||f||_{\infty}$ for all $f \in C(K, \mathscr{A})$, we now complete the proof.

Theorem 2.9. If $\inf\{\|\widehat{x}\|_{\infty}: x \in \mathscr{A}, \|x\| = 1\} > 0$ or the Gelfand representation of \mathscr{A} is an isomorphism, then $C(K,\mathscr{A})$ (= $C_1^b(K,\mathscr{A}) = C_1(K,\mathscr{A})$) endowed with the norm $\|\cdot\|$ is a Banach space.

Proof. If the Gelfand representation of \mathscr{A} is an isomorphism, then by Proposition 2.7, $(C(K,\mathscr{A}), \|\cdot\|)$ is a normed space. And, by Lemma 2.8 and the completeness of $(C(K,\mathscr{A}), \|\cdot\|_{\infty})$, we obtain that $(C(K,\mathscr{A}), \|\cdot\|)$ is a Banach space. Next, suppose that $\inf\{\|\widehat{x}\|_{\infty}: x \in \mathscr{A}, \|x\| = 1\} > 0$. Then the Gelfand representation of \mathscr{A} is injective. Thus, by Proposition 2.7, $(C(K,\mathscr{A}), \|\cdot\|)$ is a normed space. To see that it is a Banach space, let $\{f_n\}_{n=1}^{\infty}$ be a Cauchy sequence in $(C(K,\mathscr{A}), \|\cdot\|)$. First, we will prove the following statement: for every $\epsilon > 0$, there is a positive integer N such that $\|f_n(t) - f_m(t)\| < \epsilon$ for all

 $n, m \geq N$ and $t \in K$. To see this, let $\epsilon > 0$ be given, and put

$$\beta = \frac{\min\{\epsilon, \inf\{\|\widehat{x}\|_{\infty} : x \in \mathscr{A}, \|x\| = 1\}\}}{2}.$$

Then there is a positive integer N such that $||f_n - f_m|| < \beta^2$ for all $n, m \ge N$. Since $0 < \beta < \inf\{||\widehat{x}||_{\infty} : x \in \mathscr{A}, ||x|| = 1\}$, we get for each $t \in K$ and $n, m \ge N$ by Lemma 2.3 that $||f_n(t) - f_m(t)|| < \beta < \frac{\epsilon}{2} < \epsilon$. The statement is now completely proved. From this result, we have that $\{f_n(t)\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathscr{A} for all $t \in K$. Hence, by the completeness of \mathscr{A} , we obtain for each $t \in K$ that there is an f(t) in \mathscr{A} such that $f_n(t) \to f(t)$. Let $f: K \to \mathscr{A}$ be defined by $t \mapsto f(t)$. We will prove that $f \in C(K, \mathscr{A})$, and that $f_n \to f$ in $(C(K, \mathscr{A}), ||| \cdot |||)$. To prove these, let $\epsilon > 0$ be given. Then by the statement provided and proved above again, there is a positive integer N such that for every $t \in K$,

(*)
$$||f_n(t) - f_m(t)|| < \frac{\epsilon}{6} \text{ for all } n, m \ge N.$$

Since $f_n(t) \to f(t)$ for all $t \in K$, it follows for each $t \in K$ by taking the limits as $m \to \infty$ on both sides of the inequality (*) that

$$||f_n(t) - f(t)|| \le \frac{\epsilon}{6} \text{ for all } n \ge N.$$

To see that $f \in C(K, \mathscr{A})$, let $s \in K$. Since $f_N \in C(K, \mathscr{A})$, there is an open neighborhood V of s such that

$$||f_N(s) - f_N(t)|| < \frac{\epsilon}{6} \text{ for all } t \in V.$$

Thus, by (\dagger) and (\dagger) ,

$$||f(s) - f(t)|| \le ||f_N(s) - f(s)|| + ||f_N(s) - f_N(t)|| + ||f_N(t) - f(t)||$$

 $< \frac{\epsilon}{6} + \frac{\epsilon}{6} + \frac{\epsilon}{6} < \epsilon \text{ for all } t \in V.$

Accordingly, the continuity of f is obtained. By (†) again, we get

$$|||f_n - f||| \le ||f_n - f||_{\infty} \le \frac{\epsilon}{6} < \epsilon \text{ for all } n \ge N.$$

Therefore, $f_n \to f$ in $(C(K, \mathscr{A}), ||| \cdot |||)$.

Proposition 2.10. If the Gelfand representation of \mathscr{A} is an isomorphism, then the embedding $f \mapsto \Omega_{\mathscr{A}} \circ f$ is an isometric isomorphism from the Banach algebra $(C(K, \mathscr{A}), \|\cdot\|)$ onto the Banach algebra $(C(K, C(\mathscr{C}(\mathscr{A}))), \|\cdot\|_{\infty})$.

Proof. Let $g \in C(K, C(\mathscr{C}(\mathscr{A})))$. Then by the surjectivity of the Gelfand representation $\Omega_{\mathscr{A}}$ of \mathscr{A} , we have that for each $t \in K$, there is an element $h(t) \in \mathscr{A}$ such that $g(t) = \widehat{h(t)}$. Next, we define a function $h: K \to \mathscr{A}$ by $t \mapsto h(t)$. It is clear that $g = \Omega_{\mathscr{A}} \circ h$. Since the Gelfand representation of \mathscr{A} is an isomorphism, the function h is continuous. Hence the map $f \mapsto \Omega_{\mathscr{A}} \circ f$ from $(C(K,\mathscr{A}), \|\cdot\|)$ into $(C(K, C(\mathscr{C}(\mathscr{A}))), \|\cdot\|_{\infty})$ is onto.

Theorem 2.11. If \mathscr{A} satisfies the property (\star) stated in Theorem 1.1, then the following are equivalent.

- (1) The Gelfand representation of \mathscr{A} is an isomorphism.
- (2) The embedding $f \mapsto \Omega_{\mathscr{A}} \circ f$ is an isometric isomorphism from the normed algebra $(C(K, \mathscr{A}), |||\cdot|||)$ onto the Banach algebra $(C(K, C(\mathscr{C}(\mathscr{A}))), ||\cdot||_{\infty})$.
 - (3) The set $C(K, \mathscr{A})$ equipped with the norm $\|\cdot\|$ is a Banach space.
- (4) $C(K, \mathscr{A}) = C_1^b(K, \mathscr{A}) = C_1(K, \mathscr{A})$ and the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|$ on $C(K, \mathscr{A})$ are equivalent.

Replacing $C(K, \mathscr{A})$ appearing in the conditions (2) and (3) by either $C_1^b(K, \mathscr{A})$ or $C_1(K, \mathscr{A})$, the conditions (1)-(4) are also equivalent.

Proof. From Proposition 2.10, the implication $(1) \Rightarrow (2)$ is true, and it clear that $(2) \Rightarrow (3)$ is true as well. Now, we will prove that $(3) \Rightarrow (1)$ is true. Suppose that $C(K, \mathscr{A})$ equipped with the norm $\|\cdot\|$ is a Banach space. Then by Proposition 2.7, the Gelfand representation of \mathscr{A} is injective. To see that it is surjective, we will show first that the image $\widehat{\mathscr{A}}$ of \mathscr{A} under the Gelfand representation of \mathscr{A} , which is a subalgebra of $C(\mathscr{C}(\mathscr{A}))$, possesses the following properties:

- (a) $\widehat{\mathscr{A}}$ separates the points of $\mathscr{C}(\mathscr{A})$ in the sense that for any τ_1 and τ_2 in $\mathscr{C}(\mathscr{A})$ with $\tau_1 \neq \tau_2$, there is an element a in \mathscr{A} such that $\widehat{a}(\tau_1) \neq \widehat{a}(\tau_2)$;
- (b) \mathscr{A} does not annihilate any points of $\mathscr{C}(\mathscr{A})$;
- (c) $\overline{\widehat{a}} \in \widehat{\mathscr{A}}$ for all $a \in \mathscr{A}$.

Since for any τ_1 and τ_2 in $\mathscr{C}(\mathscr{A})$ with $\tau_1 \neq \tau_2$, there is an element a in \mathscr{A} such that $\widehat{a}(\tau_1) = \tau_1(a) \neq \tau_2(a) = \widehat{a}(\tau_2)$, it follows that \mathscr{A} separates the points of $\mathscr{C}(\mathscr{A})$. So the property (a) is satisfied. It is obvious that the property (b) holds since for each $\tau \in \mathscr{C}(\mathscr{A})$, we have $\tau \neq 0$, which implies that there is an a in \mathscr{A} such that $\widehat{a}(\tau) = \tau(a) \neq 0$. Satisfying the property (\star) of \mathscr{A} implies immediately that the property (c) holds. Thus, by the Stone-Weierstrass approximation theorem, we have $\widehat{\mathscr{A}} = C(\mathscr{C}(\mathscr{A}))$. From this result, the surjectivity of the Gelfand representation of \mathcal{A} will be obtained once we can show that \mathscr{A} is closed in $C(\mathscr{C}(\mathscr{A}))$. To get this, we will prove that \mathscr{A} is complete. Let $\{\widehat{a_n}\}_{n=1}^{\infty}$ be a Cauchy sequence in \mathscr{A} . For each n, let $f_n: K \to \mathscr{A}$ be defined by $f_n(t) = a_n$ for all $t \in K$. Then f_n is continuous and $|||f_n||| = ||\widehat{a_n}||_{\infty}$ for all n. Moreover, $|||f_n - f_m||| = ||\widehat{a_n} - \widehat{a_n}||_{\infty}$ for all n, m. This implies that $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $(C(K,\mathscr{A}),\|\cdot\|)$. It follows by the completeness of $(C(K, \mathscr{A}), \|\cdot\|)$ that there is an $f \in C(K, \mathscr{A})$ such that $\|f_n - f\| \to 0$. From this, we have that $\widehat{a_n} \to \widehat{f(t)}$ for each fixed $t \in K$. Therefore, $\widehat{\mathscr{A}}$ is complete. Notice that by the uniqueness of the limit of the sequence $\{\widehat{a_n}\}_{n=1}^{\infty}$, we have f(t) = f(s) for all $s, t \in K$. Hence, by the injectivity of the Gelfand representation of \mathscr{A} , we have f(t) = f(s) for all $s, t \in K$. This yields that there is a unique a in \mathscr{A} such that $\widehat{a_n} \to \widehat{a}$.

We now have the circle $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$. To complete to the proof of the theorem, we will show that the implications $(1) \Rightarrow (4) \Rightarrow (3)$ hold. By Theorem 2.2 and Lemma 2.8, the implication $(1) \Rightarrow (4)$ is immediately obtained, and finally the completeness of $(C(K, \mathscr{A}), \|\cdot\|_{\infty})$ implies that the implication $(4) \Rightarrow (3)$ is true.

We end this paper with the following observations.

Remark 2.12. (1) As proved in Example 2.5, the Gelfand representation of $(l^2)_e$ is injective but not surjective, and we can easily see that $(l^2)_e$ possesses the property (\star) . Hence, by Theorem 1.1, we have $\inf\left\{\|\widehat{x}\|_{\infty}:x\in(l^2)_e,\|x\|=1\right\}=0$

(2) By Theorem 2.11, we have for each compact Hausdorff space K that the three sets $C(K,(l^2)_e)$, $C_1^b(K,(l^2)_e)$ and $C_1(K,(l^2)_e)$ equipped with the norm $\|\cdot\|$ are incomplete normed algebras.

Acknowledgements. We thank the referee for valuable comments which improved the paper. Also, we thank Prof. Sing-Cheong Ong for the suggestion on Example 2.5. This work was supported by Faculty of Science, Silpakorn University, under the grant no. RGP 2553-04.

References

- R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- [2] W. Fupinwong and S. Dhompongsa, The fixed point property of unital abelian Banach algebras, Fixed Point Theory Appl. 2010 (2010), Artical ID 362829, 13 pp.
- [3] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I, Academic Press, New York, 1983.
- [4] ______, Fundamentals of the Theory of Operator Algebras. Vol. II, Academic Press, New York, 1986.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE SILPAKORN UNIVERSITY NAKHON PATHOM, 73000, THAILAND E-mail address: jitti@su.ac.th