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CONTINUITY OF BANACH ALGEBRA VALUED

FUNCTIONS

Jittisak Rakbud

Abstract. Let K be a compact Hausdorff space, A a commutative com-
plex Banach algebra with identity and C (A ) the set of characters of A .
In this note, we study the class of functions f : K → A such that
ΩA ◦ f is continuous, where ΩA denotes the Gelfand representation of
A . The inclusion relations between this class, the class of continuous
functions, the class of bounded functions and the class of weakly contin-
uous functions relative to the weak topology σ(A ,C (A )), are discussed.
We also provide some results on its completeness under the norm defined
by ‖|f |‖ = ‖ΩA ◦ f‖∞.

1. Introduction and preliminaries

A complex algebra A is called a normed algebra if A is in addition a normed
space together with the property that ‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ A . A
normed algebra is called a normed algebra with identity or a unital normed

algebra if it has the identity of norm 1. A normed algebra becomes a Banach

algebra if the norm is a complete norm. A class of Banach algebras which
plays a key role in mathematical analysis is the class of Banach algebras of
continuous complex-valued functions on compact Hausdorff spaces. We will
generally discuss those algebras as follows. Let K be a compact Hausdorff
space and X a Banach space with the dual X ∗. Let C(K,X ) be the set of
continuous functions from K into X . For the case where X = C, the set
C(K,C) will be denoted by just C(K). By the compactness of K, we have for
any f ∈ C(K,X ) that ‖f‖∞ = sup

t∈K
‖f(t)‖ < ∞. It is well known that C(K,X )

equipped with the norm ‖·‖∞ is a Banach space (see [3], Example 1.7.2, page
49). If, in addition, X is a Banach algebra, then so is C(K,X ) under the usual
multiplication. For any subset F of the dual X ∗ of X separating points of
X in the sense that for each non-zero element x ∈ X , there is a ρ ∈ F such
that ρ(x) 6= 0, let σ(X ,F ) be the weak topology on X induced by F , and let
CF (K,X ) be the set of continuous functions from K into (X , σ(X ,F )), which
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are called weakly continuous functions relative to the weak topology σ(X ,F ).
It is well known that (see [3], Proposition 1.3.2, page 29) CF (K,X ) is precisely
the set of functions f : K → X such that ϕf ∈ C(K) for all ϕ ∈ F . Thus
C(K,X ) ⊆ CF (K,X ). For the case of the weak topology on X , i.e., F = X ∗,
we denote the set of weakly continuous functions from K into X by Cw(K,X ).
By the closed graph theorem, the norm ‖·‖∞ can be defined and is a Banach
norm on Cw(K,X ). However, Cw(K,X ) may not be closed under the usual
multiplication when X is a Banach algebra, except for the case where K is
finite.

For any normed algebra A , the set of characters, i.e., non-zero multiplicative
linear functionals, of A is denoted by C (A ). A multiplicative linear operator
from an algebra A into an algebra B is called a homomorphism from A into
B. A homomorphism from a normed algebra A into a normed algebra B is
called an isomorphism if it is in addition a homeomorphism from A onto B. A
surjective homomorphism T from a normed algebra A into a normed algebra B

is called an isometric isomorphism if it satisfies the property that ‖Tx‖ = ‖x‖
for all x ∈ A . Obviously, every isometric isomorphism is an isomorphism.

Let A be a commutative Banach algebra with identity. It is well known that
C (A ) 6= ∅ (see [1], Theorem 2.35, page 41), and that every character of A is
continuous and has the norm equal to 1 (see [1], Proposition 2.22, page 36).
It is also known that C (A ) equipped with the topology relative to the weak∗

topology on A ∗ is a compact Hausdorff space (see [1], Proposition 2.23, page
36). For each x ∈ A , the spectrum of x denoted by σ(x) is the set of complex
numbers λ such that x − λ is not invertible. It is well known that σ(x) is a
nonempty compact subset of C (see [1], Proposition 2.28 and Theorem 2.29,
page 38), and that σ(x) = {ρ(x) : ρ ∈ C (A )} for all x ∈ A (see [1], Corollary
2.36, page 41). Thus, for each x ∈ A , the real number r(x) := sup

λ∈σ(x)

|λ|,

which is called the spectral radius of x, is well-defined. The Gelfand transform

of each x ∈ A is the continuous complex-valued function x̂ on C (A ), under
the relative weak∗ topology, which is defined by ϕ 7→ ϕ(x). It is evident that
for each x ∈ A , r(x) = ‖x̂‖∞ ≤ ‖x‖. The Gelfand representation of A

denoted by ΩA is the bounded homomorphism from A into C(C (A )) defined
by x 7→ x̂. Notice that if the Gelfand representation of A is injective, then
C (A ) separates points of A . Whence, in this situation, we obtain that every
continuous function f : K → A , where K is a compact Hausdorff space, is
a weakly continuous function relative to the weak topology σ(A ,C (A )), that
is, C(K,A ) ⊆ CC (A )(K,A ). By the bounded inverse theorem, we have that
the Gelfand representation of a commutative Banach algebra with identity
is an isomorphism if and only if it is bijective. The following is a sufficient
condition for the Gelfand representation of a commutative Banach algebra with
identity to be an isomorphism. It was provided in [2] by W. Fupinwong and S.
Dhompongsa as a preliminary.
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Theorem 1.1 ([2], Lemma 4.1, page 12). For any commutative Banach algebra

B with identity, if inf{‖x̂‖∞ : x ∈ B, ‖x‖ = 1} > 0 and B satisfies the

following property:

(⋆) for each x ∈ B, there exists a y ∈ B such that ϕ(x) = ϕ(y) for all

ϕ ∈ C (B),

then the Gelfand representation of B is an isomorphism.

For any commutative Banach algebra B with identity, it is clear that the
condition that inf{‖x̂‖∞ : x ∈ B, ‖x‖ = 1} > 0 implies the injectivity of the
Gelfand representation of B, which is equivalent to the semi-simplicity of B.
The converse of this statement is not true (see Remark 2.12). It is also clear
that the condition (⋆) is equivalent to the closedness of the subalgebra ΩB(B)
of C(C (B)) under the complex conjugation. Notice that every commutative
C∗-algebra with identity satisfies the two conditions of the above theorem.
Moreover, its Gelfand representation is an isometric ∗-isomorphism (see [3],
Theorem 4.4.3, page 270).

For any compact Hausdorff spaces X and Y , it is well known that C(X ,
C(Y )) is isometrically isomorphic to C(Y,C(X)) by the isomorphism defined

by f 7→ f̃ , where f̃ is a function from Y into C(X) such that f̃(y) is given
by x 7→ f(y)(x) (see for more details [4], page 849). From this fact, it is not
hard to see that for each function f from a compact Hausdorff space K into a
commutative Banach algebra A with identity, the following two conditions are
equivalent:

(C1) ΩA ◦ f is continuous.

(C′
1) ϕ ◦ f is continuous for all ϕ ∈ C (A ) and the function Ψ

(A ,K)
f from

C (A ), along with the topology relative to the weak∗ topology on A ∗,

into C(K) defined by Ψ
(A ,K)
f (ϕ) = ϕ◦f for all ϕ ∈ C (A ) is continuous.

And in these two situations, we have ‖ΩA ◦ f‖∞ =
∥∥∥Ψ(A ,K)

f

∥∥∥
∞
.

In this note, we deal mainly with the classes of continuous functions and
functions satisfying the condition (C1), from a compact Hausdorff space into a
commutative Banach algebra with identity.

2. Results

In the entire contents of this section, let K and A be respectively a com-
pact Hausdorff space and a commutative Banach algebra with identity which
are arbitrarily fixed. In addition, the set C (A ) of characters of A will be
considered as a topological space equipped with the topology relative to the
weak∗ topology on A ∗. Recall that ΩA denotes the Gelfand representation of
A .

Let C1(K,A ) and Cb
1(K,A ) be the sets of functions and bounded functions

from K into A respectively which satisfy the condition (C1). The inclusion re-
lations among the three sets C(K,A ), Cb

1(K,A ) and C1(K,A ) are as follows.
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Theorem 2.1. C(K,A ) ⊆ Cb
1(K,A ) ⊆ C1(K,A ).

Proof. Since K is compact, it follows easily that C(K,A ) ⊆ Cb
1(K,A ). �

Note that by the equivalence of the two conditions (C1) and (C′
1) mentioned

above, we obtain in addition for the case where the Gelfand representation
of A is injective that C1(K,A ) ⊆ CC (A )(K,A ). It is clear that a sufficient
condition which implies C(K,A ) = Cb

1(K,A ) = C1(K,A ) is that the Gelfand
representation of A is an isomorphism. We will see later that in this situation
the inclusion C1(K,A ) ⊆ CC (A )(K,A ) can still be proper.

Theorem 2.2. If the Gelfand representation of A is an isomorphism, then

C(K,A ) = Cb
1(K,A ) = C1(K,A ).

Another condition which also implies the three sets C(K,A ), Cb
1(K,A ) and

C1(K,A ) to be equal is that inf{‖x̂‖∞ : x ∈ A , ‖x‖ = 1} > 0. To prove this,
we need the following lemma.

Lemma 2.3. Suppose that inf{‖x̂‖∞ : x ∈ A , ‖x‖ = 1} > 0 and 0 < δ <
inf{‖x̂‖∞ : x ∈ A , ‖x‖ = 1}. Then for any a ∈ A , ‖â‖∞ < δ2 implies

‖a‖ < δ.

Proof. Suppose to the contrary that ‖â‖∞ < δ2, but ‖a‖ ≥ δ. Then 1
‖a‖ ≤ 1

δ .

Thus

0 < δ < inf{‖x̂‖∞ : x ∈ A , ‖x‖ = 1} ≤
∥∥∥∥∥

(̂
a

‖a‖

)∥∥∥∥∥
∞

< δ,

which is a contradiction. So we obtain that ‖â‖∞ < δ2 implies ‖a‖ < δ as
required. �

Theorem 2.4. If inf{‖x̂‖∞ : x ∈ A , ‖x‖ = 1} > 0, then C(K,A ) =

Cb
1(K,A ) = C1(K,A ).

Proof. Suppose that inf{‖x̂‖∞ : x ∈ A , ‖x‖ = 1} > 0. Since C(K,A ) ⊆
Cb

1(K,A ) ⊆ C1(K,A ), it suffices to show only that C(K,A ) = C1(K,A ).
Let f ∈ C1(K,A ). To get that f ∈ C(K,A ), let s ∈ K and ǫ > 0. Then by
the continuity of ΩA ◦ f , there is an open neighborhood V of s such that∥∥∥f̂(s)− f̂(t)

∥∥∥
∞

< β2 for all t ∈ V,

where β =
min{ǫ, inf{‖x̂‖∞ : x ∈ A , ‖x‖ = 1}}

2
. Thus, by Lemma 2.3,

‖f(s)− f(t)‖ < β ≤ ǫ

2
< ǫ for all t ∈ V.

This yields the continuity of f . �

The following example shows that there are a commutative Banach algebra
B with identity and a compact Hausdorff space E such that the Gelfand rep-
resentation of B is injective but not surjective, and the inclusions C(E,B) ⊆
Cb

1(E,B) ⊆ C1(E,B) ⊆ CC (B)(E,B) are all proper.
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Example 2.5. Consider the unitization (l2)e of the Hilbert space l2, i.e.,
(l2)e := C ⊕ l2 along with the norm ‖(λ, {xk}∞k=1)‖ := |λ| + ‖{xk}∞k=1‖2
and the multiplication defined by (λ, {xk}∞k=1)(γ, {yk}∞k=1) = (λγ, λ{yk}∞k=1 +
γ{xk}∞k=1 + {xkyk}∞k=1) for all (λ, {xk}∞k=1), (γ, {yk}∞k=1) ∈ C ⊕ l2. Here, for
any λ ∈ C and {xk}∞k=1 ∈ l2, we write (λ, 0) = λ and (0, {xk}∞k=1) = {xk}∞k=1.
Hence every (λ, {xk}∞k=1) ∈ C ⊕ l2 = (l2)e can be written in a form of ad-
dition as follows: (λ, {xk}∞k=1) = λ + {xk}∞k=1. For each integer n ≥ 1, let
ϕn : (l2)e → C be defined by ϕn (λ+ {xk}∞k=1) = λ+ xn for all λ+ {xk}∞k=1 ∈
(l2)e, and let ϕ0 : (l2)e → C be defined by ϕ0 (λ+ {xk}∞k=1) = λ for all
λ + {xk}∞k=1 ∈ (l2)e. Then ϕn ∈ C

(
(l2)e

)
for all n ≥ 0. First of all, we need

that C
(
(l2)e

)
= {ϕn : n = 0, 1, 2, . . .}, and that the Gelfand representation

of (l2)e is injective but not surjective. We do not know whether these results
are well known. For completeness and self-containedness of the contents in
this example, we will prove them again. Let ϕ ∈ C

(
(l2)e

)
. If ϕ = ϕ0, then

we are done. Suppose that ϕ 6= ϕ0. Let {en}∞n=1 be the standard orthonor-
mal basis for l2, and let ξn = ϕ(en) for all n. Since, for each n, we have
ξn = ϕ(en) = ϕ(e2n) = ϕ(en)

2 = (ξn)
2, it follows that ξn is either 0 or 1. Fur-

thermore, if n 6= k, then ξn + ξk is either 0 or 1 as well, due to the fact that
ξn + ξk = ϕ(en + ek) = ϕ((en + ek)

2) = ϕ(en + ek)
2 = (ξn + ξk)

2. From these,
we obtain that if ξn 6= 0 for some n, then ξk must be 0 for all k 6= n. Since
ϕ 6= ϕ0, we have that the restriction of ϕ on l2 is not zero, which implies that
there is a sequence {yn}∞n=1 ∈ l2 such that

∞∑

n=1

ynξn = ϕ

( ∞∑

n=1

ynen

)
= ϕ({yn}∞n=1) 6= 0.

Thus there exists a positive integer n such that ξn 6= 0. This yields that ξn = 1
and ξk = 0 for all k 6= n. Hence, for any λ+ {xk}∞k=1 ∈ (l2)e, we have

ϕ(λ+ {xk}∞k=1) = λ+ ϕ({xk}∞k=1) = λ+ ϕ

( ∞∑

k=1

ekxk

)

= λ+

∞∑

k=1

xkξk = λ+ xn

= ϕn(λ+ {xk}∞k=1).

That is, ϕ = ϕn. Therefore, we obtain C
(
(l2)e

)
= {ϕn : n = 0, 1, 2, . . .} as

required. Notice that ϕ0 is the only limit point of C
(
(l2)e

)
. Indeed, for each

n ≥ 1, the set

Vn =
{
ϕ ∈ C

(
(l2)e

)
: |ϕ(en)− ϕn(en)| < 1

}

is an open neighborhood of ϕn in C
(
(l2)e

)
which doesn’t contain all other

elements of C
(
(l2)e

)
, and for any Θ = λ+ {xk}∞k=1 ∈ (l2)e, |ϕn(Θ)−ϕ0(Θ)| =

|xn| → 0. Next, we will show that the Gelfand representation of (l2)e is injective
but not surjective. To see that the Gelfand representation of (l2)e is injective,
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let Θ = λ + {xk}∞k=1 ∈ (l2)e, and suppose that Θ̂ = 0. Then ϕn(Θ) = 0 for
all n ≥ 0. Since ϕ0(Θ) = 0, we have λ = 0. Thus Θ = {xk}∞k=1. Since for
every n ≥ 1, ϕn({xk}∞k=1) = ϕn(Θ) = 0, it follows that xn = 0 for all n. Thus
Θ = 0. To get that the Gelfand representation of (l2)e is not surjective, let
f : C

(
(l2)e

)
→ C be defined by f(ϕn) = 1√

n
for all n ≥ 1 and f(ϕ0) = 0.

We claim that f is continuous and f 6= Θ̂ for all Θ ∈ (l2)e. By the note
above, it is clear that f is continuous at ϕn for all n ≥ 1. To see that f
is continuous at ϕ0, let ǫ > 0 be given. Then there is a positive integer N
such that 1

n < ǫ2 for all n ≥ N . Let U = {ϕn : n ≥ N} ∪ {ϕ0}. Then,

by the fact that C
(
(l2)e

)
is a Hausdorff space, we get that U is an open

neighborhood of ϕ0 in C
(
(l2)e

)
. Since |f(ϕn) − f(ϕ0)| = |f(ϕn)| = 1√

n
< ǫ

for all n ≥ N , it follows that f is continuous at ϕ0. Hence f is continuous. If

Θ = λ + {xk}∞k=1 ∈ (l2)e and Θ̂ = f , then λ = ϕ0(Θ) = Θ̂(ϕ0) = f(ϕ0) = 0

and xn = ϕn(Θ) = Θ̂(ϕn) = f(ϕn) = 1√
n

for all n ≥ 1. It follows that

Θ =
{

1√
k

}∞

k=1
, which is impossible since

{
1√
k

}∞

k=1
doesn’t belong to l2. Hence

Θ̂ 6= f for all Θ ∈ (l2)e. Therefore, the Gelfand representation of (l2)e is not
surjective.

Let

E =

{
1

n
: n = 1, 2, 3, . . .

}
∪ {0}

be equipped with the topology relative to the usual topology on the set of real
numbers. Then E is a compact Hausdorff space. We now turn our attention
to confirm that the inclusions

C(E, (l2)e) ⊆ Cb
1(E, (l2)e) ⊆ C1(E, (l2)e) ⊆ CC ((l2)e)(E, (l2)e)

are all proper.
We will begin with proving that C(E, (l2)e)  Cb

1(E, (l2)e). To show this,
let f : E → (l2)e be defined by

f(x) =









1√
n
,

1√
n
, . . . ,

1√
n︸ ︷︷ ︸

n terms

, 0, 0, . . .





if x = 1
n for some n,

0 if x = 0.

For each n ≥ 1, we have

∥∥∥∥f
(
1

n

)
− f(0)

∥∥∥∥ =

∥∥∥∥f
(
1

n

)∥∥∥∥ =

∥∥∥∥∥∥∥∥





1√
n
,

1√
n
, . . . ,

1√
n︸ ︷︷ ︸

n terms

, 0, 0, . . .





∥∥∥∥∥∥∥∥
2

= 1.

From this, we get that f is bounded, and that f
(
1
n

)
9 f(0) in (l2)e, which

yields the discontinuity of f . So f /∈ C(E, (l2)e). To show that Ω(l2)e ◦ f is
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continuous, from the fact that 0 is the only limit point of E in E itself, it
suffices to prove just that Ω(l2)e ◦ f is continuous at 0. Let ǫ > 0 be given.

Then there is a positive integer N such that 1
k < ǫ

4
2 for all k ≥ N . Let

W =
{

1
k : k ≥ N

}
∪ {0}. Then W is an open neighborhood of 0 in E. Notice

that for every n ≥ 1, we have that the function ϕn ◦ f : E → C is determined
by

ϕn ◦ f
(
1

k

)
= ϕn

(
f

(
1

k

))
=





0 if k < n,

1√
k

if k ≥ n,

and ϕ0 ◦ f = 0. Let n ≥ 1 and k ≥ N . If n > k, then
∣∣∣∣ϕn

(
f

(
1

k

))∣∣∣∣ = 0 <
ǫ

2
.

If n ≤ k, then ∣∣∣∣ϕn

(
f

(
1

k

))∣∣∣∣ =
1√
k
<

ǫ

2
.

It follows that
∥∥Ω(l2)e ◦ f(x)− Ω(l2)e ◦ f(0)

∥∥
∞ =

∥∥∥f̂(x)− f̂(0)
∥∥∥
∞

=
∥∥∥f̂(x)

∥∥∥
∞

= sup
n≥0

|ϕn (f (x))|

< ǫ for all x ∈ W.

Whence the function Ω(l2)e ◦ f is continuous. Previously, it has already been

shown that f is bounded. Therefore, f ∈ Cb
1((l

2)e, E).
Next, we will show that Cb

1(E, (l2)e)  C1(E, (l2)e). Let g : E → (l2)e be
defined by

g(x) =









1

n1/3
,

1

n1/3
, . . . ,

1

n1/3︸ ︷︷ ︸
n terms

, 0, 0, . . .





if x = 1
n for some n,

0 if x = 0.

Then for each n ≥ 1, we have

∥∥∥∥g
(
1

n

)∥∥∥∥ =

∥∥∥∥∥∥∥∥





1

n1/3
,

1

n1/3
, . . . ,

1

n1/3︸ ︷︷ ︸
n terms

, 0, 0, . . .





∥∥∥∥∥∥∥∥
2

= n1/6.

Thus g is unbounded. By an argument similar to that for proving the continuity
of Ω(l2)e ◦f , the continuity of Ω(l2)e ◦g is obtained. Hence we get Cb

1(E, (l2)e)  
C1(E, (l2)e) as required.
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Finally, we will prove that C1(E, (l2)e)  CC ((l2)e)(E, (l2)e). Let h : E →
(l2)e be defined by

h(x) =







0, 0, . . . , 0︸ ︷︷ ︸

n terms

, 1, 0, 0, . . .



 if x = 1

n for some n,

0 if x = 0.

Then for each n ≥ 1, the function ϕn ◦ h : E → C is determined by

ϕn ◦ h
(
1

k

)
= ϕn

(
h

(
1

k

))
=




0 if k + 1 6= n,

1 if k + 1 = n,

and ϕ0 ◦ h = 0. This yields that ϕn ◦ h is continuous for all n ≥ 0. So

h ∈ CC ((l2)e)(E, (l2)e). It is apparent for every x ∈ E with x 6= 0 that
∥∥Ω(l2)e ◦ h(x)− Ω(l2)e ◦ h(0)

∥∥
∞ =

∥∥∥ĥ(x)
∥∥∥
∞

= sup
n≥0

|ϕn(h(x))| = 1.

This implies that Ω(l2)e ◦ h is not continuous. Consequently, h /∈ C1(E, (l2)e).

If the Gelfand representation ΩA of A is an isomorphism, then by Theorem
2.2 and the injectivity of ΩA , we have that

C(K,A ) = Cb
1(K,A ) = C1(K,A ) ⊆ CC (A )(K,A ).

The following example shows that in this situation the two sets C1(K,A ) and
CC (A )(K,A ) may not be equal.

Example 2.6. In this example, we consider the commutative C∗-algebra with
identity C[0, 1] of continuous complex valued functions on [0, 1] and the Alexan-
droff one-point compactification of [1,∞) which is denoted by [1,∞]. Let
f : [1,∞] → C[0, 1] be defined by f(r) = fr for all r ∈ [1,∞], where for
any r ∈ [1,∞), fr : [0, 1] → R is defined by fr(t) =

rt
1+r2t2 for all t ∈ [0, 1], and

f∞ = 0. For each t ∈ [0, 1], we have δt ◦ f(r) = δt(fr) = fr(t) = rt
1+r2t2 for

all r ∈ [1,∞), where δt ∈ C (C[0, 1]) which is the point evaluation at t ∈ [0, 1].

Since lim
r→∞

fr(t) = 0 = f∞(t) for all t ∈ [0, 1], it follows that δt ◦ f is continuous

on [1,∞] for all t ∈ [0, 1]. It is easy to check that ‖fr‖∞ = 1
2 for all r ∈ [1,∞).

From this, we obtain that ‖fn − f∞‖∞ = ‖fn‖∞ = 1
2 for all positive integer n.

It follows that ‖fn − f∞‖∞ 9 0. Thus f is not continuous.

It is easy to see that C1(K,A ) is an algebra containing both C(K,A ) and
Cb

1(K,A ) as subalgebras. We next investigate the completeness of these three
algebras under the norm ‖|·|‖ on C1(K,A ) defined naturally by

‖|f |‖ := ‖ΩA ◦ f‖∞ = sup
t∈K

∥∥∥f̂(t)
∥∥∥
∞

.

Notice that ‖|f |‖ ≤ ‖f‖∞ for all f ∈ Cb
1(K,A ).
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Proposition 2.7. The vector space C1(K,A ) equipped with the norm ‖|·|‖ is

a normed space if and only if the Gelfand representation of A is injective. In

this case, the normed space (C1(K,A ), ‖|·|‖) is furthermore a normed algebra.

Proof. Suppose that the Gelfand representation of A is injective. We will show
that the function ‖|·|‖ is precisely a norm on C1(K,A ). It is clear that ‖λf‖ =
|λ| ‖|f |‖ and ‖f + g‖ ≤ ‖|f |‖+ ‖g‖ for all f, g ∈ C1(K,A ) and λ ∈ C, and that
‖|0|‖ = 0. We need to show that ‖|f |‖ = 0 implies f = 0 for all f ∈ C1(K,A ).

Let f ∈ C1(K,A ), and assume that ‖|f |‖ = 0. Then
∥∥∥f̂(t)

∥∥∥
∞

= 0 for all

t ∈ K. This gives us that f̂(t) = 0 for all t ∈ K. So, by the injectivity of
the Gelfand representation of A , we have for each t ∈ K that f(t) = 0, which
yields f = 0. Thus the vector space C1(K,A ) equipped with the norm ‖|·|‖ is
a normed space. It is obvious that fg ∈ C1(K,A ) and ‖|fg|‖ ≤ ‖|f |‖ ‖|g|‖ for
all f, g ∈ C1(K,A ). Hence (C1(K,A ), ‖|·|‖) is in addition a normed algebra.
Conversely, suppose that (C1(K,A ), ‖|·|‖) is a normed space. To prove that the
Gelfand representation of A is injective, let a ∈ A , and suppose that â = 0.
Let f : K → A be defined by f(t) = a for all t ∈ K. It is clear that f is
continuous. Since ‖|f |‖ = ‖â‖∞ = 0, it follows by the assumption that f = 0.
Therefore, by the definition of f , we have a = 0. �

Lemma 2.8. If the Gelfand representation of A is an isomorphism, then

the two norms ‖·‖∞ and ‖|·|‖ on C(K,A ) (= Cb
1(K,A ) = C1(K,A )) are

equivalent.

Proof. Since the Gelfand representation of A is an isomorphism, there is a
c > 0 such that ‖x‖ ≤ c ‖x̂‖∞ for all x ∈ A , and we obtain by Proposition 2.7
that ‖|·|‖ is a norm on C(K,A ). Hence, for any f ∈ C(K,A ),

‖f‖∞ = sup
t∈K

‖f(t)‖ ≤ c

(
sup
t∈K

∥∥∥f̂(t)
∥∥∥
∞

)
= c ‖|f |‖ .

So, by the fact that ‖|f |‖ ≤ ‖f‖∞ for all f ∈ C(K,A ), we now complete the
proof. �

Theorem 2.9. If inf{‖x̂‖∞ : x ∈ A , ‖x‖ = 1} > 0 or the Gelfand repre-

sentation of A is an isomorphism, then C(K,A ) (= Cb
1(K,A ) = C1(K,A ))

endowed with the norm ‖|·|‖ is a Banach space.

Proof. If the Gelfand representation of A is an isomorphism, then by Propo-
sition 2.7, (C(K,A ), ‖|·|‖) is a normed space. And, by Lemma 2.8 and the
completeness of (C(K,A ), ‖·‖∞), we obtain that (C(K,A ), ‖|·|‖) is a Banach
space. Next, suppose that inf{‖x̂‖∞ : x ∈ A , ‖x‖ = 1} > 0. Then the Gelfand
representation of A is injective. Thus, by Proposition 2.7, (C(K,A ), ‖|·|‖) is
a normed space. To see that it is a Banach space, let {fn}∞n=1 be a Cauchy
sequence in (C(K,A ), ‖|·|‖). First, we will prove the following statement: for
every ǫ > 0, there is a positive integer N such that ‖fn(t)− fm(t)‖ < ǫ for all
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n,m ≥ N and t ∈ K. To see this, let ǫ > 0 be given, and put

β =
min{ǫ, inf{‖x̂‖∞ : x ∈ A , ‖x‖ = 1}}

2
.

Then there is a positive integer N such that ‖|fn − fm|‖ < β2 for all n,m ≥ N .
Since 0 < β < inf{‖x̂‖∞ : x ∈ A , ‖x‖ = 1}, we get for each t ∈ K and
n,m ≥ N by Lemma 2.3 that ‖fn(t)− fm(t)‖ < β < ǫ

2 < ǫ. The statement is
now completely proved. From this result, we have that {fn(t)}∞n=1 is a Cauchy
sequence in A for all t ∈ K. Hence, by the completeness of A , we obtain for
each t ∈ K that there is an f(t) in A such that fn(t) → f(t). Let f : K → A

be defined by t 7→ f(t). We will prove that f ∈ C(K,A ), and that fn → f
in (C(K,A ), ‖|·|‖). To prove these, let ǫ > 0 be given. Then by the statement
provided and proved above again, there is a positive integer N such that for
every t ∈ K,

(∗) ‖fn(t)− fm(t)‖ <
ǫ

6
for all n,m ≥ N.

Since fn(t) → f(t) for all t ∈ K, it follows for each t ∈ K by taking the limits
as m → ∞ on both sides of the inequality (∗) that

(†) ‖fn(t)− f(t)‖ ≤ ǫ

6
for all n ≥ N.

To see that f ∈ C(K,A ), let s ∈ K. Since fN ∈ C(K,A ), there is an open
neighborhood V of s such that

(‡) ‖fN (s)− fN(t)‖ <
ǫ

6
for all t ∈ V.

Thus, by (†) and (‡),
‖f(s)− f(t)‖ ≤ ‖fN(s)− f(s)‖+ ‖fN (s)− fN(t)‖ + ‖fN (t)− f(t)‖

<
ǫ

6
+

ǫ

6
+

ǫ

6
< ǫ for all t ∈ V.

Accordingly, the continuity of f is obtained. By (†) again, we get

‖|fn − f |‖ ≤ ‖fn − f‖∞ ≤ ǫ

6
< ǫ for all n ≥ N.

Therefore, fn → f in (C(K,A ), ‖|·|‖). �

Proposition 2.10. If the Gelfand representation of A is an isomorphism,

then the embedding f 7→ ΩA ◦ f is an isometric isomorphism from the Banach

algebra (C(K,A ), ‖|·|‖) onto the Banach algebra (C(K,C(C (A ))), ‖·‖∞).

Proof. Let g ∈ C(K,C(C (A ))). Then by the surjectivity of the Gelfand repre-
sentation ΩA of A , we have that for each t ∈ K, there is an element h(t) ∈ A

such that g(t) = ĥ(t). Next, we define a function h : K → A by t 7→ h(t).
It is clear that g = ΩA ◦ h. Since the Gelfand representation of A is an iso-
morphism, the function h is continuous. Hence the map f 7→ ΩA ◦ f from
(C(K,A ), ‖|·|‖) into (C(K,C(C (A ))), ‖·‖∞) is onto. �



CONTINUITY OF BANACH ALGEBRA VALUED FUNCTIONS 537

Theorem 2.11. If A satisfies the property (⋆) stated in Theorem 1.1, then

the following are equivalent.

(1) The Gelfand representation of A is an isomorphism.

(2) The embedding f 7→ ΩA ◦f is an isometric isomorphism from the normed

algebra (C(K,A ), ‖|·|‖) onto the Banach algebra (C(K,C(C (A ))), ‖·‖∞).
(3) The set C(K,A ) equipped with the norm ‖|·|‖ is a Banach space.

(4) C(K,A ) = Cb
1(K,A ) = C1(K,A ) and the norms ‖·‖∞ and ‖|·|‖ on

C(K,A ) are equivalent.

Replacing C(K,A ) appearing in the conditions (2) and (3) by either Cb
1(K,

A ) or C1(K,A ), the conditions (1)-(4) are also equivalent.

Proof. From Proposition 2.10, the implication (1) ⇒ (2) is true, and it clear
that (2) ⇒ (3) is true as well. Now, we will prove that (3) ⇒ (1) is true.
Suppose that C(K,A ) equipped with the norm ‖|·|‖ is a Banach space. Then
by Proposition 2.7, the Gelfand representation of A is injective. To see that

it is surjective, we will show first that the image Â of A under the Gelfand
representation of A , which is a subalgebra of C(C (A )), possesses the following
properties:

(a) Â separates the points of C (A ) in the sense that for any τ1 and τ2 in
C (A ) with τ1 6= τ2, there is an element a in A such that â(τ1) 6= â(τ2);

(b) Â does not annihilate any points of C (A );

(c) â ∈ Â for all a ∈ A .

Since for any τ1 and τ2 in C (A ) with τ1 6= τ2, there is an element a in A

such that â(τ1) = τ1(a) 6= τ2(a) = â(τ2), it follows that Â separates the points
of C (A ). So the property (a) is satisfied. It is obvious that the property (b)
holds since for each τ ∈ C (A ), we have τ 6= 0, which implies that there is
an a in A such that â(τ) = τ(a) 6= 0. Satisfying the property (⋆) of A im-
plies immediately that the property (c) holds. Thus, by the Stone-Weierstrass

approximation theorem, we have Â = C(C (A )). From this result, the surjec-
tivity of the Gelfand representation of A will be obtained once we can show

that Â is closed in C(C (A )). To get this, we will prove that Â is complete.

Let {ân}∞n=1 be a Cauchy sequence in Â . For each n, let fn : K → A be
defined by fn(t) = an for all t ∈ K. Then fn is continuous and ‖|fn|‖ = ‖ân‖∞
for all n. Moreover, ‖|fn − fm|‖ = ‖ân − ân‖∞ for all n,m. This implies that
{fn}∞n=1 is a Cauchy sequence in (C(K,A ), ‖|·|‖). It follows by the complete-
ness of (C(K,A ), ‖|·|‖) that there is an f ∈ C(K,A ) such that ‖|fn − f |‖ → 0.

From this, we have that ân → f̂(t) for each fixed t ∈ K. Therefore, Â is
complete. Notice that by the uniqueness of the limit of the sequence {ân}∞n=1,

we have f̂(t) = f̂(s) for all s, t ∈ K. Hence, by the injectivity of the Gelfand
representation of A , we have f(t) = f(s) for all s, t ∈ K. This yields that
there is a unique a in A such that ân → â.
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We now have the circle (1) ⇒ (2) ⇒ (3) ⇒ (1). To complete to the proof
of the theorem, we will show that the implications (1) ⇒ (4) ⇒ (3) hold.
By Theorem 2.2 and Lemma 2.8, the implication (1) ⇒ (4) is immediately
obtained, and finally the completeness of (C(K,A ), ‖·‖∞) implies that the
implication (4) ⇒ (3) is true. �

We end this paper with the following observations.

Remark 2.12. (1) As proved in Example 2.5, the Gelfand representation of (l2)e
is injective but not surjective, and we can easily see that (l2)e possesses the
property (⋆). Hence, by Theorem 1.1, we have inf

{
‖x̂‖∞ : x ∈ (l2)e, ‖x‖ = 1

}

= 0.
(2) By Theorem 2.11, we have for each compact Hausdorff space K that the

three sets C(K, (l2)e), C
b
1(K, (l2)e) and C1(K, (l2)e) equipped with the norm

‖|·|‖ are incomplete normed algebras.
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