• Title/Summary/Keyword: renew energy

Search Result 12, Processing Time 0.031 seconds

Evaluation Standard of Cost-Effectiveness Analysis for Renew of Architectural Equipment in Public Building (공공건물 건축설비 갱신 계획시 비용-효율분석 평가기준에 관한 연구)

  • Jung, Soon-Sung
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.131-138
    • /
    • 2013
  • The purpose of this study is to suggest the evaluation standard of cost-effectiveness analysis for renew of architectural equipment in public building. Evaluation items of cost-effectiveness analysis for renew of architectural equipment in public building were used life cycle cost, energy consumption(ton of oil equivalent), green house gas emissions(ton of carbon dioxide) and maximum power demand. Life cycle cost is the process of making an economic assessment of an item, area, system, or facility by considering all significant costs of ownership over an economic life, expressed in terms of equivalent costs. The essence of life cycle costing is the analysis of equivalent costs of various alternative proposals. The social concern with green house gas and maximum power demand of architectural equipment field has been growing for the last several years.

Mechatronic Control Model of the Wind Turbine with Transmission to Split Power

  • Zhang Tong;Li Wenyong;Du Yu
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.533-541
    • /
    • 2005
  • In this paper, a wind turbine with power splitting transmission, which is realized through a novel three-shaft planetary, is presented. The input shaft of the transmission is driven by the rotor of the wind turbine, the output shaft is connected to the grid via the main generator (asynchronous generator), and the third shaft is driven by a control motor with variable speed. The dynamic models of the sub systems of this wind turbine, e.g. the rotor aerodynamics, the drive train dynamics and the power generation unit dynamics, were given and linearized at an operating point. These sub models were integrated in a multidisciplinary dynamic model, which is suitable for control syntheses to optimize the utilization of wind energy and to reduce the excessive dynamic loads. The important dynamic behaviours were investigated and a wind turbine with a soft main shaft was recommend.

3D Optimal Design of Transformer Tank Shields using Design Sensitivity Analysis

  • Yingying Yao;Ryu, Jae-Seop;Koh, Chang-Seop;Dexin Xie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.23-31
    • /
    • 2003
  • A novel 3D shape optimization algorithm is presented for electromagnetic devices carry-ing eddy current. The algorithm integrates the 3D finite element performance analysis and the steepest descent method with design sensitivity and mesh relocation method. For the design sensitivity formula, the adjoint variable vector is defined in complex form based on the 3D finite element method for eddy current problems. A new 3D mesh relocation method is also proposed using the deformation theory of the elastic body under stress to renew the mesh as the shape changes. The design sensitivity f3r the sur-face nodal points is also systematically converted into that for the design variables for the parameterized optimization application. The proposed algorithm is applied to the optimum design of the tank shield model of the transformer and the effectiveness is proved.

A Study on Characteristics of Rice Bran Oil as an Alternative Fuel in Diesel Engine(I) (디젤기관의 대체연료로서 미장유의 특성 연구(I))

  • 오영택;최승훈;김승원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2002
  • Lately, our world is faced with very serious problems related to the increased air pollution of the exhaust emissions from automobiles. In particular, the exhaust emissions of diesel engines are recognized as a main cause which strongly influence environment. Lots of researchers have attempted to develop various alternative fuels to reduce these harmful emissions in diesel engine. The purpose of this investigation is to evaluate the possibility of esterfied rice bran oil for diesel fuel substitution in a naturally aspirated D. 1. diesel engine, and also find means to reduce smoke emissions in esterfied rice bran oil combustion. The smoke emission of esterfied rice bran oil is reduced remarkably in comparison with commercial gas oil, that is, it was reduced approximately 58.2% at 2500rpm. But, power, torque and brake specific energy consumption didn't have no large differences. It was concluded that esterfied rice bran oil can utilize effectively as an alternative and renew- able fuel fur diesel engine.

Analysis and Improvement of Power Quality for A Fuel Cell System Based on Multi-level Converters (멀티 레벨 컨버터를 이용한 연료 전지 시스템의 전력품질 분석과 개선)

  • Kim Yoon-Ho;Moon Hyun-Wook;Kim Soo-Hong;Jeong Eun-Jin
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.37-45
    • /
    • 2005
  • The fuel cell system is one of very useful energy sources. The system has advantages as renew-able and environmental sources. To obtain AC electricity from fuel cells, inverters are necessary. A multilevel converter is used as an inverter for a high power fuel cell system. Through harmonic analysis, it is shown that the harmonic components and THD increase while fundamental component decreases as voltage sag increases. To solve the voltage sag problems, three different approaches are investigated in this paper; installation of a boost converter at the fuel cell output, control of pulse widths, and use of ultracapacitors. The proposed three approaches are analyzed and compared using simulation and experimental results.

A Space Making of Waterfront City focused on the Sustainable Campus on the Waterfront (워터프론트도시 공간조성방안 연구 -워터프론트 대학의 지속가능 캠퍼스를 중심으로)

  • Lee, Kumjin;Chu, Beom;Song, Changgeun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.6-14
    • /
    • 2017
  • The opportunity provided for design method and strategy of sustainable campus on the waterfront, is the purpose of this paper. Waterfront campus is an important issue as it seeks to revive the sustainability and to renew the facilities. This paper reviews an assessment of its success for waterfront campus in 10 principles such as waterfront, water and safety, climate & energy, green building and transportation, green labs and recycling, health and food, social economic sustainability, fund, human, smart, also concludes with the establishment of space making for the waterfront campus for future educational facilities on the waterfront; implementation of waterfront campus maserplan; building sustainable campus in adaptation to climate change; creative and resilient cooperation.

Opportunities and Challenges in Metals Recovery from Secondary Sources - US Perspective

  • Han, Kenneth N.
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.3-8
    • /
    • 2001
  • The mineral industry of the United States is going through a challenging time. The US as an industrial nation faces with increasing demand in raw materials to fuel various industrial sectors but, at the same time, meeting environmental constraints associated with excavating and extracting these raw materials. In addition, gradual depletion of material resources. and the necessity of handling more complex forms of resources of primary origin have led to a decline in her resource productivity, once a strategic advantage of the U.S. As a result. the United States currently relies heavily upon foreign importation of various materials such as precious and strategic metals. However, since the US is the major consumer of most of these materials, the recovery of these values from scrap would help renew her position as a resource-producing nation, and ultimately help spur its domestic economy. Furthermore. recycling would also help maintain a clean environment and reduce energy consumption. In this paper. the author attempts to discuss opportunities and challenges lied ahead of the US mineral in relation to recovering their much-needed resources from secondary sources. The need and demand in various metals in the US will be reviewed and discussed. The implication of resource recovery from secondary sources will also be discussed. Extraction methods treating secondary sources are inherently different from those for primary sources. There is a need for new technologies which are metallurgically efficient and environmentally benign in treating secondary sources. Ways to meet such a need will be examined and key factors to be considered in approaching these challenges will be discussed.

  • PDF

Assessment of a Pre-conceptual Design of a Spent PWR Fuel Disposal Container (가압경수로형 사용후핵연료 처분용기의 예비 개념설계 평가)

  • Choi, Jong-Won;Cho, Dong-Keun;Lee, Yang;Choi, Heui-Joo;Lee, Jong-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.41-50
    • /
    • 2006
  • In this paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid & bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert, the Maximum Von Mises stress from the 102 cm-container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by $\sim20$ tons.

  • PDF

Pre-conceptual Design of a Spent PWR Fuel Disposal Container (가압경수로형 사용후핵연료 처분용기의 예비 개념설계 평가)

  • CHO Dong-Keun;CHOI Jongwon;Lee Yang;CHOI Heui-Joo;LEE Jong-Youl
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.153-162
    • /
    • 2005
  • In this Paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid & bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert, the Maximum Von Mises stress from the 102 cm container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by ${\~}$20 tons.

  • PDF

Chemical Composition of Acacia Flower(Robinia pseudo-acacia) (아카시아(Robinia pseudo-acacia) 꽃의 화학성분 조성)

  • Kwon, Joong-Ho;Byun, Myung-Woo;Kim, Young-Hoi
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.789-793
    • /
    • 1995
  • Chemical composition was determined to renew interest in acacia flower as food. The moisture content was 86.60%. The chemical composition showed 24.55% of protein, 8.51% of ash, 40.97% of total sugar and 160.44mg% of ascorbic acid on dry matter basis, respectively. Free sugar was mainly composed of fructose, sucrose and glucose. In fatty acid composition, the ratio of saturated and unsaturated fatty acids was 1.7 : 1. The unsaturated acids were primarily composed of polyenoic acid by more than 90%. The amino acid was distributed with a ratio 0.32 of essential to total amino acids. Important elements of acacia flower were K, Mg, Ca, Fe, and Na. Flavor components such as 24.19% of octadecanoic acid, 9.41% of benzyl alcohol, 7.05% of linalool, 5.43% of heptacosane and 4.28% of geraniol were identified as major volatile compounds of acacia flower.

  • PDF