Ocean remote sensing reflectance of just above water level was modeled using inherent optical properties of seawater contents, total absorption (a) and backscattering(bb) coefficients ($R_{rs}$=0.046 $b_b$/(a+$b_b$). This modeling was based on the specific absorption and backscattering coefficients of 5 optically active seawater components; phytoplankton pigments, non-chlorophyllous suspended particles, dissolved organic matters, heterotrophic microorganisms, and the other unknown particle components. Simulated remote sensing reflectance($R_{rs}$) and water leaving radiance(Lw) spectra were well agreed with in-situ measurements obtained using a bi-directional fields remote spectrometer in coastal waters and open ocean. $R_{rs}$ values in SeaWiFS bands from the model were analyzed to develop 2-band ratio ocean color chlorophyll with those observed insitu. Also, chlorophyll algorithm based on remote reflectance developed in this study fell in those obtained by a SeaBAM working group. The model algorithms were examined and compared with those observed insitu. Also, chlorophyll algorithm based on remote reflectance developed in this study fell in those obtained by a SeaBAM working group. The remote reflectance model will be very helpful to understand the variation of water leaving radiances caused by the various components in the seawater, and to develop new ocean color algorithm for CASE-II water using neural network method or other analytical method, and in the model of fine atmospheric signal correction.
We developed a CASE-II water model that will enable the simulation of remote sensing reflectance($R_{rs}$) at the coastal waters for the retrieval of suspended sediments (SS) concentrations from satellite imagery. The model has six components which are: water, chlorophyll, dissolved organic matter (DOM), non-chlorophyllous particles (NC), heterotrophic microorganisms and an unknown component, possibly represented by bubbles or other particulates unrelated to the five first components. We measured $R_{rs}$, concentration of SS and chlorophyll, and absorption of DOM during our field campaigns in Korea. In addition, we generated $R_{rs}$ from different concentrations of SS and chlorophyll, and various absorptions of DOM by random number functions to create a large database to test the model. We assimilated both the computer generated parameters as well as the in-situ measurements in order to reconstruct the reflectance spectra. We validated the model by comparing model-reconstructed spectra with observed spectra. The estimated $R_{rs}$ spectra were used to (1) evaluate the performance of four wavelengths and wavelengths ratios for accurate retrieval of SS. 2) identify the optimum band for SS retrieval, and 3) assess the influence of the SS on the chlorophyll algorithm. The results indicate that single bands at longer wavelengths in visible better results than commonly used channel ratios. The wavelength of 625nm is suggested as a new and optimal wavelength for SS retrieval. Because this wavelength is not available from SeaWiFS, 555nm is offered as an alternative. The presence of SS in coastal areas can lead to overestimation chlorophyll concentrations greater than 20-500%.
This study uses empirical method to estimate absorption coefficient of colored dissolved organic matter $(a_{dom})$ from GOCI satellite data with the relationship between band ratio of remote sensing reflectance $(R_{rs})$ and $a_{dom}$. For development of $a_{dom}$ estimation algorithm, the used data is in-situ data about ocean optical properties in the around seawater area of the Korean Peninsula during 1998 - 2005. The relationship of $R_{rs}$(412)/$R_{rs}$(555), $R_{rs}$(443)/$R_{rs}$(555), $R_{rs}$(490)/$R_{rs}$(555), $R_{rs}$(510)/$R_{rs}$(555) and $a_{dom}$(412) showed $R^2$ values of 0.707, 0.707, 0.597 and 0.552, respectively. The spectrum of $a_{dom}({\lambda})$ is shape of exponential function $a_{dom}({\lambda})$ value decreases with increasing wavelength. For estimation of $a_{dom}$ from satellite data, we developed an algorithm from the relationship of $a_{dom}$(412) and $R_{rs}$(412)/$R_{rs}$(555). This algorithm was employed on SeaWiFS imagery to estimate $R_{rs}$(412) in the South Sea, East Sea, Yellow Sea and northern East China Sea areas. Also, SeaDAS-derived $a_{dg}$(412) from same SeaWiFS imagery, These $a_{dg}$(412) was then compared with in-situ and empirical-algorithm-derived $a_{dom}$(412), but these values were different. We think two points that such different values are caused by discrepancy related to failure of standard atmospheric correction scheme, the other are caused by error related to definition of $a_{dom}$(412) and $a_{dg}$(412).
Several ocean color algorithms have been developed for GOCI (Geostationary Ocean Color Imager) using in-situ bio-optical data sets. These data sets collected around the Korean Peninsula between 1998 and 2009 include chlorophyll-a concentration (Chl-a), suspended sediment concentration (SS), absorption coefficient of dissolved organic matter ($a_{dom}$), and remote sensing reflectance ($R_{rs}$) obtained from 1348 points. The GOCI Chl-a algorithm was developed using a 4-band remote sensing reflectance ratio that account for the influence of suspended sediment and dissolved organic matter. The GOCI Chl-a algorithm reproduced in-situ chlorophyll concentration better than the other algorithms. In the SeaWiFS images, this algorithm reduced an average error of 46 % in chlorophyll concentration retrieved by standard chlorophyll algorithms of SeaWiFS. For the GOCI SS algorithm, a single band was used (Ahn et al., 2001) instead of a band ratio that is commonly used in chlorophyll algorithms. The GOCI $a_{dom}$ algorithm was derived from the relationship between remote sensing reflectance band ratio ($R_{rs}(412)/R_{rs}(555)$) and $a_{dom}(\lambda)$). The GOCI Chl-a fluorescence and GOCI red tide algorithms were developed by Ahn and Shanmugam (2007) and Ahn and Shanmugam (2006), respectively. If the launch of GOCI in June 2010 is successful, then the developed algorithms will be analyzed in the GOCI CAL/VAL processes, and improved by incorporating more data sets of the ocean optical properties data that will be obtained from waters around the Korean Peninsula.
For estimation of three inherent optical properties (IOPs), the absorption coefficients for phytoplankton ($a_{ph}$) and suspended solid particle ($a_{ss}$) and dissolved organic matter ($a_{dom}$), from ocean reflectance, we used inversion of remote sensing reflectance model (Ahn et al., 2001) at this study. The IOP inversion model assumes that (1) the relationship between remote sensing reflectance ($R_{rs}$) and absorption (a) and backscattering ($b_{b}$) is well known, (2) the optical coefficients for pure water ($a_{w}$, $b_{bw}$) are known, (3) the spectral shapes of the specific absorption coefficients for phytoplankton ($a^*_{ph}$) and suspended solid particle ($a^*_{ss}$) and the specific backscattering coefficients for phytoplankton ($b_b^*_{ph}$) and suspended solid particle ($b_b^*_{ss}$) are known. The input data of IOP inversion model is used in-situ ocean optical data at the seawater around the Korea Peninsula for 5 years (2001-2005). We compared the output data of the IOP inversion model and the in-situ observation for seawater around the Korea Peninsula.
The present study aims to derive and compare narrow and broad bandwidths of ocean color sensor’s algorithms for the study of monitoring highly dynamic coastal oceanic environmental parameters using high-resolution imagery acquired from Multi-spectral Camera (MSC) on KOMPSAT-2. These algorithms are derived based on a large data set of remote sensing reflectances ($R_{rs}$) generated by using numerical model that relates $b_b/(a + b_b)$ to $R_{rs}$ as functions of inherent optical properties, such as absorption and backscattering coefficients of six water components including water, phytoplankton (chl), dissolved organic matter (DOM), suspended sediment (SS) concentration, heterotropic organism (he) and an unknown component, possibly represented by bubbles or other particulates unrelated to the first five components. The modeled $R_{rs}$ spectra appear to be consistent with in-situ spectra collected from Korean waters. As Kompsat-2 MSC has similar spectral characteristics with Landsat-5 Thematic Mapper (TM), the model generated $R_{rs}$ values at 2 ㎚ interval are converted to the equivalent remote sensing reflectances at MSC and TM bands. The empirical relationships between the spectral ratios of modeled $R_{rs}$ and chlorophyll concentrations are established in order to derive algorithms for both TM and MSC. Similarly, algorithms are obtained by relating a single band reflectance (band 2) to the suspended sediment concentrations. These algorithms derived by taking into account the narrow and broad spectral bandwidths are compared and assessed. Findings suggest that there was less difference between the broad and narrow band relationships, and the determination coefficient $(r^2)$ for log-transformed data [ N = 500] was interestingly found to be $(r^2)$ = 0.90 for both TM and MSC. Similarly, the determination coefficient for log-transformed data [ N = 500] was 0.93 and 0.92 for TM and MSC respectively. The algorithms presented here are expected to make significant contribution to the enhanced understanding of coastal oceanic environmental parameters using Multi-spectral Camera.
Retrieval of ocean color information from Multispectral Camera (MSC) on KOMPSAT-2 was investigated to study and characterize small-scale biophysical features in the coastal oceans. Prior to the derivation of such information from space-acquired ocean color imageries, the atmospheric effects largely from path and the air-sea interface should be removed from the total signal recorded at the top of the atmosphere (T$_{TOA}$). In this study, the 'path-extraction' is introduced and demonstrated on the TM and SeaWiFS imageries of highly turbid coastal waters of Korea. The algorithms for retrieval of ocean color information were explored from the remote reflectance (R$_{rs}$) in the visible wavebands of MSC. The determination of coefficient (R$^{2}$) for log-transformed data [ N = 500] was 0.90. Similarly, the R$^{2}$ value for log-transformed data [ N = 500] was found to be 0.93.
In ocean color remote sensing, atmospheric correction is a vital process for ensuring the accuracy and reliability of ocean color products. Furthermore, in recent years, the remote sensing community has intensified its requirements for understanding errors in satellite data. Accordingly, research is currently addressing errors in remote sensing reflectance (Rrs) resulting from inaccuracies in meteorological variables (total ozone, pressure, wind field, and total precipitable water) used as auxiliary data for atmospheric correction. However, there has been no investigation into the error in Rrs caused by the variability of the water vapor profile, despite it being a recognized error source. In this study, we used the Second Simulation of a Satellite Signal Vector version 2.1 simulation to compute errors in water vapor transmittance arising from variations in the water vapor profile within the GOCI-II observation area. Subsequently, we conducted an analysis of the associated errors in ocean color products. The observed water vapor profile not only exhibited a complex shape but also showed significant variations near the surface, leading to differences of up to 0.007 compared to the US standard 62 water vapor profile used in the GOCI-II atmospheric correction. The resulting variation in water vapor transmittance led to a difference in aerosol reflectance estimation, consequently introducing errors in Rrs across all GOCI-II bands. However, the error of Rrs in the 412-555 nm due to the difference in the water vapor profile band was found to be below 2%, which is lower than the required accuracy. Also, similar errors were shown in other ocean color products such as chlorophyll-a concentration, colored dissolved organic matter, and total suspended matter concentration. The results of this study indicate that the variability in water vapor profiles has minimal impact on the accuracy of atmospheric correction and ocean color products. Therefore, improving the accuracy of the input data related to the water vapor column concentration is even more critical for enhancing the accuracy of ocean color products in terms of water vapor absorption correction.
Min Jee-Eun;Ahn Yu-Hwan;Lee Kyu-Sung;Ryu Joo-Hyung
Korean Journal of Remote Sensing
/
v.22
no.2
/
pp.87-99
/
2006
The Median Resolution Sensors (MRSs) for land observation such as Landsat-ETM+ and SPOT-HRV are more effective than Ocean Color Sensors (OCSs) for studying of detailed ecological and biogeochemical components of the coastal waters. In this study, we developed suspended sediment algorithm for Landsat TM/ETM+ by considering the spectral response curve of each band. To estimate suspended sediment concentration (SS) from satellite image data, there are two difference types of algorithms, that are derived for enhancing the accuracy of SS from Landsat imagery. Both empirical and remote sensing reflectance model (hereafter referred to as $R_{rs}$ model) are used here. This study tried to compare two algorithm, and verified using in situ SS data. It was found that the empirical SS algorithm using band 2 produced the best result. $R_{rs}$ model-based SS algorithm estimated higher values than empirical SS algorithm. In this study we used $R_{rs}$ model developed by Ahn (2000) focused on the Mediterranean coastal area. That's owing to the difference of oceanic characteristics between Mediterranean and Korean coastal area. In the future we will improve that $R_{rs}$ model for the Korean coastal area, then the result will be advanced.
Several MODIS AQUA products have been compared with shipboard data to assess the possibility of using remote sensing to estimate particulate organic carbon (POC) concentration in the surface waters of the East Sea. A total of 30 POC profiles obtained in spring and summer seasons of the years of 2006~2010 were compared with remote sensing reflectance at various wavelengths and diffuse attenuation coefficient at 490 nm observed by MODIS AQUA. The algorithm thus established was $POC=266.85^*[R_{rs}(488)/R_{rs}(555)]^{-1.447}$ ($R^2=0.924$) with root mean square error of 20.9 mg $m^{-3}$. Remotely sensed POC contents derived using our algorithm appeared also not to be affected by the presence of non-POC component in suspended particulate matter. Therefore this algorithm could be applied to obtain POC concentration over the East Sea using MODIS Aqua observation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.