DOI QR코드

DOI QR Code

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI)

정지궤도 해색탑재체(GOCI) 해수환경분석 알고리즘 개발

  • 문정언 (한국해양연구원 해양위성센터) ;
  • 안유환 (한국해양연구원 해양위성센터) ;
  • 유주형 (한국해양연구원 해양위성센터) ;
  • Received : 2010.04.03
  • Accepted : 2010.04.20
  • Published : 2010.04.30

Abstract

Several ocean color algorithms have been developed for GOCI (Geostationary Ocean Color Imager) using in-situ bio-optical data sets. These data sets collected around the Korean Peninsula between 1998 and 2009 include chlorophyll-a concentration (Chl-a), suspended sediment concentration (SS), absorption coefficient of dissolved organic matter ($a_{dom}$), and remote sensing reflectance ($R_{rs}$) obtained from 1348 points. The GOCI Chl-a algorithm was developed using a 4-band remote sensing reflectance ratio that account for the influence of suspended sediment and dissolved organic matter. The GOCI Chl-a algorithm reproduced in-situ chlorophyll concentration better than the other algorithms. In the SeaWiFS images, this algorithm reduced an average error of 46 % in chlorophyll concentration retrieved by standard chlorophyll algorithms of SeaWiFS. For the GOCI SS algorithm, a single band was used (Ahn et al., 2001) instead of a band ratio that is commonly used in chlorophyll algorithms. The GOCI $a_{dom}$ algorithm was derived from the relationship between remote sensing reflectance band ratio ($R_{rs}(412)/R_{rs}(555)$) and $a_{dom}(\lambda)$). The GOCI Chl-a fluorescence and GOCI red tide algorithms were developed by Ahn and Shanmugam (2007) and Ahn and Shanmugam (2006), respectively. If the launch of GOCI in June 2010 is successful, then the developed algorithms will be analyzed in the GOCI CAL/VAL processes, and improved by incorporating more data sets of the ocean optical properties data that will be obtained from waters around the Korean Peninsula.

GOCI(정지궤도 해색센서) 해수환경분석 알고리즘들은 해양 광 특성 현장관측 자료들을 이용하여 개발되었다. 사용된 자료는 1998년부터 2009년까지 한반도 주변 해역에서 총 1348개 정점에서 얻어진 엽록소 농도(Chl-a), 부유물 농도(SS), 용존유기물의 흡광계수($a_{dom}$), 원격반사도($R_{rs}$) 현장자료들이다. GOCI 엽록소 농도 산출 알고리즘(GOCI Chl-a)은 부유물과 용존유기물의 영향을 모두 고려하고 네 개의 원격반사도 밴드비를 이용하여 개발하였다. GOCI Chl-a 알고리즘은 다른 알고리즘들보다 현장관측자료에 근사한 엽록소 농도 값을 산출하였다. SeaWiFS 영상자료에서 GOCI Chl-a 알고리즘은 SeaWiFS 표준 엽록소 산출 알고리즘들보다 평균 46 % 정도 보정된 엽록소 농도 값을 산출하였다. GOCI 부유물 농도 산출 알고리즘(GOCI SS)은 보편적인 두 개의 원격반사도 밴드비를 사용하지 않고, Ahn et al.(2001)의 원격반사도 단일밴드 방법을 사용하여 개발하였다. GOCI 용존유기물 산출 알고리즘(GOCI $a_{dom}$)은 원격반사도 밴드비 $R_{rs}(412)/R_{rs}(555)$$a_{dom}(\lambda)$)의 상관관계를 이용하여 개발하였다. GOCI 엽록소 형광 알고리즘과 GOCI 적조분석 알고리즘은 Ahn and Shanmugam(2007)와 Ahn and Shanmugam(2006)의 연구들에 의해 각각 개발되었다. 2010년 6월경에 GOCI의 성공적인 발사가 이루어지면 추후 GOCI 자료의 검보정 연구를 통해 개발된 알고리즘들의 문제점을 분석하고, 한반도 주변 해역의 해양 광 특성 현장자료의 지속적인 업데이트를 통한 알고리즘들의 개선작업이 이루어질 것이다.

Keywords

Acknowledgement

Supported by : 한국해양연구원

References

  1. 문정언, 안유환, 최중기, 2002. 우리나라 주변 해역에 대한 SeaWiFS chlorophyll 표준 알고리즘의 적합성 연구. 2002 한국해양학회 추계학술발표대회 논문집, 한양대학교, 11월14일-15일, pp. 103-107.
  2. 문정언, 안유환, 유주형, 양찬수, 최중기, 2005. "CASE-II water" 클로로필 알고리즘 개발을 위한 클로로필, 부유물, 용존유기물의 해양광학 적 상관관계 분석. 2005 한국해양학회 추계학술 발표대회 논문집, 한국해양연구원, 11월03일- 04일, pp. 246-250.
  3. 문정언, 유주형, 안유환, 민지은, 최중기, 2008. 황동종 국해 엽록소 산출 알고리즘 개발에 관한 연구. 2008 한국해양과학기술협의회 공동학술대회 논문집, 제주ICC, 5월29일-30일, pp. 202.
  4. 안유환, 유신재, 석문식, 이흥재, 염기대, 이동영, 장만, 신경순, 문정언, 1999. 위성에 의한 적조 및 해수 탁도 원격탐사 기술개발. 한국해양연구소, BSPE98721-00-1224-01.
  5. 안유환, 문정언, 서원찬, 윤홍주, 2009. 해색원격탐사 활용을 위한 적조생물종 고유 광특성 연구. 한국해양환경공학회지, 12(1): 45-54.
  6. Ahn, Y. H., J. E. Moon, and S. Gallegos, 2001. Development of suspended particulate matter algorithms for ocean color remote sensing. Korean Journal of Remote Sensing, 17(4): 285- 295. https://doi.org/10.7780/kjrs.2001.17.4.285
  7. Ahn, Y. H., P. Shanmugam, and S. Gallegos, 2004. Evolution of suspended sediment patterns in the East China and Yellow Seas. Journal of the Korean Society of Oceanography, 39(1): 26-34.
  8. Ahn, Y. H., P. Shanmugam, K. I. Chang, J. E. Moon, and J. H. Ryu, 2005. Spatial and temporal aspects of phytoplankton blooms in complex ecosystems off the Korean coast from satellite ocean color observations. Ocean Science Journal, 40(2): 67-78. https://doi.org/10.1007/BF03028587
  9. Ahn, Y. H. and P. Shanmugam, 2006. Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters. Remote Sensing of Environment, 103(4): 419-437. https://doi.org/10.1016/j.rse.2006.04.007
  10. Ahn, Y. H., P. Shanmugam, J. H. Ryu, and J.C. Jeong, 2006. Satellite detection of harmful algal bloom occurrence in Korean waters. Harmful Algae, 5(2): 213-231. https://doi.org/10.1016/j.hal.2005.07.007
  11. Ahn, Y. H. and P. Shanmugam, 2007. Derivation and analysis of the fluorescence algorithms to estimate phytoplankton pigment concentreations in optically complex coastal waters. Journal of Optics A: Pure and Applied Optics, 9(4): 352-362. https://doi.org/10.1088/1464-4258/9/4/008
  12. Bricaud, A., A. Morel, and L. Prieur, 1981. Absorption by dissolved organic matter in the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography, 26(1): 43-53. https://doi.org/10.4319/lo.1981.26.1.0043
  13. Carder, K. L. and R. G. Steward, 1985. A remotesensing reflectance model of a red-tide dinoflagellate off west Florida. Limnology and Oceanography, 30(2): 286-298. https://doi.org/10.4319/lo.1985.30.2.0286
  14. Carder, K. L., R. G. Steward, G. R. Harvey, and P. B. Ortner, 1989. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography, 34(1): 68-81. https://doi.org/10.4319/lo.1989.34.1.0068
  15. Carder, K. L., S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B.G. Mitchell, 1991. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products. Journal of Geophysical Research, 96(C11): 20599-20611. https://doi.org/10.1029/91JC02117
  16. Carder, K. L., F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, 1999. Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophylla and absorption with bio-optical domains based on nitratedepletion temperatures. Journal of Geophysical Research, 104(C3): 5403-5421. https://doi.org/10.1029/1998JC900082
  17. Carder, K. L., F. R. Chen, J. P. Cannizzaro, J. W. Campbell, and B. G. Mitchell, 2004. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a. Advances in Space Research, 33(7): 1152-1159. https://doi.org/10.1016/S0273-1177(03)00365-X
  18. Corsini, G., R. Grasso, and P. Cipollini, 2002. Regional bio-optical algorithms for the Alboran Sea from a reflectance model and in situ data. Geophysical Research Letters, 29(15), 1739, 10.1029/2001GL013861.
  19. Darecki, M. and D. Stramski, 2004. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sensing of Environment, 89(3): 326-350. https://doi.org/10.1016/j.rse.2003.10.012
  20. Doerffer, R. and J. Fischer, 1994. Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. Journal of Geophysical Research, 99(C4): 7457-7466. https://doi.org/10.1029/93JC02523
  21. Doerffer, R. and H. Schiller, 2007. The MERIS Case 2 water algorithm. International Journal of Remote Sensing, 28(3-4): 517-535. https://doi.org/10.1080/01431160600821127
  22. Garver, S. A. and D. Siegel, 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea. Journal of Geophysical Research, 102(C8): 18607-18625. https://doi.org/10.1029/96JC03243
  23. Gohin, F., J. N. Druon, and L. Lampert, 2002. A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International Journal of Remote Sensing, 23(8): 1639-1661. https://doi.org/10.1080/01431160110071879
  24. Gordon, H. R. and A. Morel, 1983. Remote assessment of ocean color for interpretation of satellite visible imagery: a review. In: Lecture Notes on Coastal and Estuarine Studies, edited by Barker, R. T., N. K. Mooers, M. J. Bowman and B. Zeitzschel, Springer-Verlag, New York.
  25. Hansell, D. A. and C. A. Carlson, 2002. Biogeochemistry of Marine Dissolved Organic Matter. Academic Press.
  26. Hu, C., F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil,2005. Red tide detection and tracing using MODIS Fluorescence data: A regional example in SW Florida coastal waters. Remote Sensing of Environment, 97(3): 311-321. https://doi.org/10.1016/j.rse.2005.05.013
  27. Huot, Y., C. A. Brown, and J. J. Cullen, 2005. New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products. Limnology and Oceanography:Methods, 3: 108-130. https://doi.org/10.4319/lom.2005.3.108
  28. Kahru, M. and B. G. Mitchell, 1999. Empirical chlorophyll algorithm and preliminary SeaWiFS validation for the California Current. International Journal of Remote Sensing, 20(17): 3423-3429 https://doi.org/10.1080/014311699211453
  29. Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press.
  30. Lee, Z. P., K. L. Carder, and R. Arnone, 2002. Deriving inherent optical properties from water color: A multi-band quasi-analytical algorithm for optically deep waters. Applied Optics, 41(21): 5755-5772. https://doi.org/10.1364/AO.41.005755
  31. Lee, Z. P., K. P. Du, and R. Arnone, 2005. A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research, 110, C02016, doi:10.1029/2004JC002275.
  32. Letelier, R. M. and M. R. Abbott, 1996. An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sensing of Environment, 58(2): 215-223. https://doi.org/10.1016/S0034-4257(96)00073-9
  33. Loise, H. and A. Morel, 1998. Light scattering and chlorophyll concentration in case 1 waters: A reexamination, Limnology and Oceanography, 43(5): 847-858. https://doi.org/10.4319/lo.1998.43.5.0847
  34. Maritorena, S., D. A. Siegel, and A. R. Peterson, 2002. Optimization of a semianalytical ocean color model for global-scale applications. Applied Optics, 41(15): 2705-2714. https://doi.org/10.1364/AO.41.002705
  35. Meroni, M., M. Rossini, L. Guanter, L. Alonso, U. Rascher, R. Colombo, and J. Moreno, 2009.Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sensing of Environment, 113(10): 2037-2051. https://doi.org/10.1016/j.rse.2009.05.003
  36. Miller, R. L., C. E. D. Castillo, and B. A. McKee, 2005. Remote Sensing of Coastal Aquatic Environments. Springer.
  37. MODIS ATBD Report, 1997. Bio-Optical Algorithms- Case 1 Waters. edited by Clark, D.K..
  38. Morel, A. and L. Prieur, 1977. Analysis of variations in ocean color. Limnology and Oceanography, 22(4): 709-722. https://doi.org/10.4319/lo.1977.22.4.0709
  39. O'Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, 1998. Ocean color chlorophyll algorithm for SeaWiFS. Journal of Geophysical Research, 103(C11): 24937-24953. https://doi.org/10.1029/98JC02160
  40. Pradhan, Y., A. V. Thomaskutty, A. S. Rajawat, and S. Nayak, 2005. Improved regional algorithm to retrieve total suspended particulate matter using IRS-P4 ocean colour monitor data. Journal of Optics A: Pure and Applied Optics, 7(7): 343-349. https://doi.org/10.1088/1464-4258/7/7/012
  41. Schalles, J. F., 2006. Optical remote sensing techniques to estimate phytoplankton chlorophyll a concentration in coastal waters with varying suspended matter and CDOM concentrations. In: Remote Sensing of Aquatic Coastal Ecosystem Processes, edited by Richardson, L.L. and E.F. LeDrew, Springer, pp.27-79.
  42. Schiller, H. and R. Doerffer, 1999. Neural network for emulation of an inverse model-operational derivation of Case II water properties from MERIS data. International Journal of Remote Sensing, 20(9): 1735-1746. https://doi.org/10.1080/014311699212443
  43. Shanmugam, P., Y. H. Ahn, and P. S. Ram, 2008. SeaWiFS sensing of hazardous algal blooms and their underlying mechanisms in shelfslope waters of the Nothwest Pacific during summer. Remote Sensing of Environment,112(8): 3248-3270. https://doi.org/10.1016/j.rse.2008.04.002
  44. Siswanto, E., J. Tang, Y. H. Ahn, J. Ishizaka, S. J. Yoo, S. W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, 2010. Ocean color algorithms to retrieve chlorophyll-a, total suspended matter and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas. (in preparation).
  45. Tang, D. L., H. Kawamura, H. Doan-Nhu, and W. Takahashi, 2004. Remote sensing oceanography of a harmful algal bloom off the coast of southeastern Vietnam. Journal of Geophysical Research, 109, C03014, doi:10.1029/2003JC002045.
  46. Tassan, S., 1988. The effect of dissolved "yellow substance" on the quantitative retrieval of chlorophyll and total suspended sediment concentrations from remote measurements of water colour. International Journal of Remote Sensing, 9(4): 787-797. https://doi.org/10.1080/01431168808954893
  47. Tassan, S., 1994. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters. Applied Optics, 33(12): 2369-2378. https://doi.org/10.1364/AO.33.002369
  48. Zhang, M., J. Tang, Q. Dong, Q. T. Song, and J. Ding, 2010. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sensing of Environment, 114(2): 392-403. https://doi.org/10.1016/j.rse.2009.09.016