DOI QR코드

DOI QR Code

Derivation and Comparison of Narrow and Broadband Algorithms for the Retrieval of Ocean Color Information from Multi-Spectral Camera on Kompsat-2 Satellite

  • Published : 2005.06.01

Abstract

The present study aims to derive and compare narrow and broad bandwidths of ocean color sensor’s algorithms for the study of monitoring highly dynamic coastal oceanic environmental parameters using high-resolution imagery acquired from Multi-spectral Camera (MSC) on KOMPSAT-2. These algorithms are derived based on a large data set of remote sensing reflectances ($R_{rs}$) generated by using numerical model that relates $b_b/(a + b_b)$ to $R_{rs}$ as functions of inherent optical properties, such as absorption and backscattering coefficients of six water components including water, phytoplankton (chl), dissolved organic matter (DOM), suspended sediment (SS) concentration, heterotropic organism (he) and an unknown component, possibly represented by bubbles or other particulates unrelated to the first five components. The modeled $R_{rs}$ spectra appear to be consistent with in-situ spectra collected from Korean waters. As Kompsat-2 MSC has similar spectral characteristics with Landsat-5 Thematic Mapper (TM), the model generated $R_{rs}$ values at 2 ㎚ interval are converted to the equivalent remote sensing reflectances at MSC and TM bands. The empirical relationships between the spectral ratios of modeled $R_{rs}$ and chlorophyll concentrations are established in order to derive algorithms for both TM and MSC. Similarly, algorithms are obtained by relating a single band reflectance (band 2) to the suspended sediment concentrations. These algorithms derived by taking into account the narrow and broad spectral bandwidths are compared and assessed. Findings suggest that there was less difference between the broad and narrow band relationships, and the determination coefficient $(r^2)$ for log-transformed data [ N = 500] was interestingly found to be $(r^2)$ = 0.90 for both TM and MSC. Similarly, the determination coefficient for log-transformed data [ N = 500] was 0.93 and 0.92 for TM and MSC respectively. The algorithms presented here are expected to make significant contribution to the enhanced understanding of coastal oceanic environmental parameters using Multi-spectral Camera.

Keywords

References

  1. Abbott, M. R. and D. B. Chelton, 1991. Advances in passive remote sensing of the ocean. Reviews of Geophysics, 29: 571-589
  2. Ahn, Y. H., 1990. Optical properties of biogeneous and mineral particles present in the ocean. Application: Inversion of reflectance. Ph.D thesis, Paris-VI University, France
  3. Ahn, Y. H., A. Bricaud, and A. Morel, 1992. Light backscattering efficiency and related properties of some phytoplankters. Deep-Sea Research, 39: 1835-1855 https://doi.org/10.1016/0198-0149(92)90002-B
  4. Ahn, Y. H., 1999. Development of an inverse model from ocean reflectance. Marine Technology Society Journal, 33: 69-80 https://doi.org/10.4031/MTSJ.33.1.9
  5. Ahn, Y. H., 2000. Development of remote sensing reflectance and water leaving radiance models for ocean color remote sensing technique. Journal of the Korean Society of Remote Sensing, 16: 240-260
  6. Ahn, Y. H., J. E. Moon, and S. Gallegos, 2001. Development of suspended particulate matter algorithms for ocean color remote sensing. Korean Journal of Remote Sensing, 17: 285- 295 https://doi.org/10.7780/kjrs.2001.17.4.285
  7. Ahn, Y. H., P. Shanmugam., and S. Gallegos, 2004. Evolution of suspended sediment patterns in the East China and Yellow Sea. Journal of the Korean Society of Oceanography, 39, 26-34
  8. Ahn, Y. H. and P. Shanmugam, 2004. New methods for correcting the atmospheric effects in Landsat Imagery over turbid waters, 20(5): 289-305
  9. Alfoldi, T. T., 1978. water quality analysis by digital chromaticity mapping of Landsat data. Canadian Journal of Remote Sensing, 4: 108- 126 https://doi.org/10.1080/07038992.1978.10854974
  10. Austin, R. W., 1974. Inherent spectral radiance signatures of the ocean surface, In: Ocean color analysis. La Jolla, CA, Scripps Institute of Oceanography, pp.195
  11. Austin, R. W., 1980. Gulf of Mexico, ocean-color surface-truth measurements. Boundary Layer Meteorology, 18: 269-285 https://doi.org/10.1007/BF00122024
  12. Barale, V. and C. C. Trees, 1987. Spatial variability of the ocean color field in CZCS imagery. Advances in Space Research, 7: 95-100
  13. Bricaud, A., A. Morel, and L. Prieur, 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography, 26: 43-53 https://doi.org/10.4319/lo.1981.26.1.0043
  14. Bricaud, A., A. Morel., M. Babin., K. Allali, and Claustre, 1998. Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (Case- 1) waters: Analysis and implications for bio-optical models, Journal of Geophysical Research, 103: 31,033-31,044 https://doi.org/10.1029/98JC02712
  15. Bricaud, A., A. Morel, and V. Barale, 1999. MERIS potential for ocean color studies in the open ocean. International Journal of Remote Sensing, 20: 1757-1769 https://doi.org/10.1080/014311699212461
  16. Burenkov, V. I., O.V. Korelvich., S. V. Sheberstov, and V. I. Vedernikov, 2000. Sub-satellite measurements of ocean color: validation of the SeaWiFS satellite scanner data. Oceanology, 40: 357-362
  17. Carder, K. L., F. R. Chen., Z. P. Lee, and S. K. Hawes, 1999. Semi-analytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate depletion temperatures. Journal of Geophysical Research, 104: 5403-5421 https://doi.org/10.1029/1998JC900082
  18. Collins, M. and C. Pattiaratchi, 1984. Identification of suspended sediment in ocean waters using airborne thematic mapper data. International Journal of Remote Sensing, 5: 635-657 https://doi.org/10.1080/01431168408948848
  19. Doerffer, R., 1981. Factor analysis in ocean color interpretation. In: Oceanography from space, (Gower, J.F.R., ed), Plenum Press, NY, 339- 345
  20. Doxaran, D., J. M. Froidefond., S. Lavender, and P. Castaing, 2002. Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations. Remote Sensing of Environment, 81: 149-161 https://doi.org/10.1016/S0034-4257(01)00341-8
  21. Esaias, W. E., M. R. Abbott., I. Barton., O. B. Brown., J. W. Campbell., K. L. Carder., D. K. Clark., R. H. Evans., F. E. Hoge., H. R. Gordon., W. M. Balch., R. Letelier, and P. J. Minnett, 1998. An overview of MODIS capabilities for Ocean science observations. IEEE Transactions on Geoscience and Remote Sensing, 36: 1250- 1264 https://doi.org/10.1109/36.701076
  22. Garver, S. A. and D. A. Siegel, 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: Time series from the Sargasso Sea. Journal of Geophysical Research, 102: 18,607-18,625 https://doi.org/10.1029/96JC03243
  23. Gitelson, A., 1992. The peak near 700nm on reflectance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. International Journal of Remote Sensing, 13: 3367-3373 https://doi.org/10.1080/01431169208904125
  24. Gordon, H. R., D. K. Clark., J. L. Mueller, and W. A. Hovis, 1980. Phytoplankton pigments from the Nimbus-7 coastal Zone Color Scanner: Comparisons with surface measurements. Science, 210: 63-66 https://doi.org/10.1126/science.210.4465.63
  25. Gordon, H. R. and A. Morel, 1983. Remote assessment of ocean color for interpretation of satellite visible imagery: A review. Lecture notes on Coastal and Estuarine studies, M. Bowman (ed.), Spring-Verlag. pp.114
  26. Kirk, J. T. O., 1983. Light and Photosynthesis in Aquatic Ecosystems, Cambridge University Press, Cambridge, UK
  27. Kishino, M., S. Sugihara, and N. Okami, 1986. Theoretical analysis of the in situ fluorescence of chlorophyll-a on the underwater spectral irradiance. Bulletein de la Societe Franco- Japanaise d' Oceanographie, 24: 130-138
  28. Klemas, V., D. Bartlett., W. Philpot., R. Rogers, and L. Reed, 1974. Coastal and estuarine studies with ERTS-1 and Skylab. Remote Sensing of Environment, 3: 153-74. 152,162-3 https://doi.org/10.1016/0034-4257(74)90002-9
  29. KORDI Report, 2003. Preliminary studies and the user requirements of the ocean payloads in geostationary orbit satellites, BSPK045-00- 1536-1, Korea
  30. Lee, Z. P., K. L. Carder., R. G. Steward., T. G. Peacock., C. O. Davis, and J. S. Patch, 1998. An empirical algorithm for light absorption by ocean water based on color. Journal of Geophysical Research, 103: 27,967-27,978 https://doi.org/10.1029/98JC01946
  31. Loisel, H., D. Stramski., B. G. Mitchell., F. Fell., F. Fournier-Sicre., B. Lemasle, and M. Babin, 2001. Comparison of the ocean inherent optical properties obtained from measurements and inverse modeling. Applied Optics, 40: 2384- 2397 https://doi.org/10.1364/AO.40.002384
  32. Mobley, C. D., 1999. Estimation of the remote sensing reflectance from above-sea surface. Applied Optics, 38: 7442-7455 https://doi.org/10.1364/AO.38.007442
  33. McClain, C. R., 1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103(24): 937-953
  34. Mitchell, B. G. and D. A. Kiefer, 1988. Chlorophyll a specific absorption and fluorescence excitation spectra for light limited phytoplankton. Deep- Sea Research, 35: 639-663 https://doi.org/10.1016/0198-0149(88)90024-6
  35. Morel, A. and L. Prieur, 1977. Analysis of variations in ocean color. Limnology and Oceanography, 22(4): 709-722 https://doi.org/10.4319/lo.1977.22.4.0709
  36. Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (Case-I waters). Journal of Geophysical Research, 93: 749-10,768
  37. Morel, A. and B. Gentli, 1996. Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote sensing problem. Applied Optics, 35: 4850-4862 https://doi.org/10.1364/AO.35.004850
  38. Munday, J. C. and T. T. Alfoldi, 1979. Landsat test of diffuse reflectance models for aquatic suspended solids measurement. Remote Sensing of Environment, 8: 83-169, 145-6, 152-3
  39. Neville, R. A. and J. F. R. Gower, 1977. Passive remote sensing of phytoplankton via chlorophyll-a fluorescence. Journal of Geophysical Research, 82: 3487-3493 https://doi.org/10.1029/JC082i024p03487
  40. O'Reilly, J. E., S. Maritorena., B. G. Mitchell., D. A. Seigel., K. L. Carder., S. A. Garver., M. Kahru, and C. McClain, 1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103: 24,937-24953 https://doi.org/10.1029/98JC02160
  41. Sathyendranath, S., G. Cota., V. Stuart., H. Maass, and T. Platt, 2001. Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches. International Journal of Remote Sensing, 22: 249-273 https://doi.org/10.1080/014311601449925
  42. Smith, R. C. and K. S. Baker, 1982. Oceanic chlorophyll concentrations as determined by satellite (Nimbus-7 coastal zone color scanner). Marine Biology, 66: 269-279 https://doi.org/10.1007/BF00397032
  43. Stramski, D., 1994. Gas micropubbles: An assessment their significance to light scattering in quiescent seas. Ocean optics XII, J.S. Jaffe, editor, Proc. Society of Photo-Optical Instrumentation Engineers, Bellingham, 2258: 704-710
  44. Stumpf, R. P. and J. R. Pennock, 1991. Remote estimation of the diffuse attenuation coefficient in a moderately turbid estuary. Remote Sensing of Environment, 38: 182-191
  45. Yoo, S. J. and H. C. Kim, 2000. Validation of ocean color algorithms in the Ulleung Basin, East/Japan Sea. Journal of the Korean Society of Remote Sensing, 16: 315-325 https://doi.org/10.7780/kjrs.2000.16.4.315