• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.032 seconds

A Fuzzy Inference based Reliability Method for Underground Gas Pipelines in the Presence of Corrosion Defects

  • Kim, Seong-Jun;Choe, Byung Hak;Kim, Woosik;Ki, Ikjoong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.343-350
    • /
    • 2016
  • Remaining lifetime prediction of the underground gas pipeline plays a key role in maintenance planning and public safety. One of main causes in the pipeline failure is metal corrosion. This paper deals with estimating the pipeline reliability in the presence of corrosion defects. Because a pipeline has uncertainty and variability in its operation, probabilistic approximation approaches such as first order second moment (FOSM), first order reliability method (FORM), second order reliability method (SORM), and Monte Carlo simulation (MCS) are widely employed for pipeline reliability predictions. This paper presents a fuzzy inference based reliability method (FIRM). Compared with existing methods, a distinction of our method is to incorporate a fuzzy inference into quantifying degrees of variability in corrosion defects. As metal corrosion depends on the service environment, this feature makes it easier to obtain practical predictions. Numerical experiments are conducted by using a field dataset. The result indicates that the proposed method works well and, in particular, it provides more advisory estimations of the remaining lifetime of the gas pipeline.

Reliability-Based Optimization of Continuous Steel Box Girder Bridges (신뢰성에 기초한 강상형 연속교의 단면 최적설계)

  • 조효남;이두화;정지승;민대홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.145-154
    • /
    • 1997
  • The results of optimum design by the deterministic approach adopted in the current design codes depend upon the safety levels of the applied code. But, it is now generally recognized that structural problems are nondeterministic and, consequently, that engineering optimum design must cope with uncertainties. Therefore, it is not an overstatement to affirm that the combination of reliability-based design procedures and optimization techniques is the only means of providing a powerful tool to obtain a practical optimum design solution. In the paper, reliability based optimum design procedure as a rational approach to optimum structural design is presented. The design constraints are formulated based on the ASD, LRFD and reliability theories. The reliability analysis is based on an advanced first-order second moment approach. Uncertainties in the structural strength and loading due to inherent variability as well as modeling and prediction errors are included in failure due to combined bending and shear. For the realistic reliability-based optimization of continuous steel box girder bridges, interactive non-linear limit state model is formulated based on the von Mises's combined stress yield criterion. Comparative results are presented when the ASD criteria are used for the optimum design of a structure under reliability constraints. In addition, this study comparatively shows the results of the optimum design for various criteria of design codes.

  • PDF

A Methodology for Determination of the Safety Distance in Chemical Plants using CFD Modeling (CFD 모델링을 이용한 화학공장의 안전거리 산정 방법론에 관한 연구)

  • Baek, Ju-Hong;Lee, Hyang-Jig;Jang, Chang Bong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.162-167
    • /
    • 2016
  • As the simple empirical and phenomenological model applied to the analysis of leakage and explosion of chemical substances does not regard numerous variables, such as positional density of installations and equipment, turbulence, atmospheric conditions, obstacles, and wind effects, there is a significant gap between actual accident consequence and computation. Therefore, the risk management of a chemical plant based on such a computation surely has low reliability. Since a process plant is required to have outcomes more similar to the actual outcomes to secure highly reliable safety, this study was designed to apply the CFD (computational fluid dynamics) simulation technique to analyze a virtual prediction under numerous variables of leakages and explosions very similarly to reality, in order to review the computation technique of the practical safety distance at a process plant.

An Evaluation of Induced Voltage according to the Grounding Resistance of a 22.9 kV-Y Distribution Line Simulated for its Field Application for Lightning Prevention (낙뢰 예방 배전선로의 현장 적용을 위해 모의된 22.9 kV-Y의 접지저항에 따른 유도전압의 평가)

  • Kim, Jeom-Sik;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.14-19
    • /
    • 2015
  • This study performed simulation tests to prevent induced lightning that occurs to a 22.9 kV-Y distribution line. A simulated distribution line reduced to 1/50 of an actual distribution line was installed to measure the induced voltage according to the change in grounding resistance. It was found that the induced voltage increased as the grounding resistance increased but that the range of its increase was small. This study examined the reliability of the proposed lightning preventive distribution line using the Minitab program (Minitab 17). When a grounding resistance of $300{\Omega}$ was maintained for each electric pole, the Anderson Darling (AD) was 0.410, the smallest, and the P value was analyzed to be 0.323, verifying that the reliability and stability were excellent. Therefore, these results will be utilized as a basis for the substantiation of a lightning preventive distribution line before its installation.

A Study on Pricing Criteria of the Laboratory Safety Inspection and Diagnosis (연구실 점검 및 진단 대가기준에 관한 연구)

  • Lee, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.170-176
    • /
    • 2018
  • Laboratory inspection and diagnosis is a means of investigating and assessing various hazards or the state of research equipment in a laboratory, then taking appropriate safety measures to prevent accidents and injury. In many cases, laboratory inspection and diagnosis carried out by agencies are performed in a perfunctory manner that only barely satisfies the legal requirements. The aim of the present study is to provide clearly established pricing criteria for laboratory inspection and diagnosis, so as to prevent recurrence of laboratory accidents and to establish a safe laboratory environment. In order to clarify previously unclear matters, such as the lower limit for bids submitted by laboratory inspection and diagnosis agencies, technical manpower requirements, and number of laboratories inspected and diagnosed per day, a questionnaire survey was administered to agency personnel. First, when asked what the lower limit for bids submitted by agencies should be in order to improve reliability of inspection and diagnosis results and make up for the shortcomings of the lowest-bidder-wins system, 85.5% of respondents answered that the lower limit for bids should stand at no lower than 90% of the estimated price. The level of technical expertise among the technical personnel committed to laboratory inspection and diagnosis was shown to impact the reliability of results, and questionnaire results indicated a need to vary technical expertise levels depending on the degree of hazard, substances handled, and equipment used in a given laboratory. Level of technical expertise(67.1%) and number of personnel(52.6%) were shown to have a greater impact on reliability of diagnosis than on reliability of inspection. According to the results, it is determined that three persons(specialist, advanced and intermediate) should be committed to inspections, while four persons(professional, specialist, advanced and intermediate) should be committed to diagnoses. The respondents indicated a larger number of laboratories could be inspected than diagnosed per day. This can be attributed to differences in the amount of work each task involves, and the time each task takes. Assuming a six-hour work day not counting transportation, paperwork and rest, it is thought that inspection of up to 36 laboratories will be possible if each laboratory is assigned no more than 10 minutes(34.7%), while up to 24 laboratories could be inspected and diagnosed if each laboratory is assigned 15 to 20 minutes(35.1%).

A Study on the Reliability Management of Onboard Signaling Equipment for the Korean Tilting Train (한국형 틸팅열차 차상신호장치 신뢰성관리에 대한 연구)

  • Shin, Duck-O;Baek, Jong-Hyun;Lee, Knag-Me;Kim, Yong-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.852-858
    • /
    • 2009
  • This paper is a study on the reliability management of onboard signaling equipment for the Koran Tilting Train (TTX) to run the existing railway to express railway. For safe running of tilting train which operates at Automatic Train Protection (ATP) and Automatic Train Stop (ATS), a reliability management plan for TTX onboard is proposed for preventing train safety from driver oversight and malfunction by establishing braking curves based on movement authority and speed limit, according to preceding train location and rail conditions. Also, reliability of TTX onboard equipment on the basis of proposed plan was estimated, and actual case studies based on the international requirements IEC 62278 (EN 50126) were provided to verify its reliability.

HALT of High Power Amplifier Module Used in Radar (레이더용 고출력 증폭기 모듈의 HALT)

  • Hwang, Soon-Mi;Kim, Chul-Hee;Lee, Kwan-Hun
    • Journal of Applied Reliability
    • /
    • v.14 no.2
    • /
    • pp.97-102
    • /
    • 2014
  • Radar is an object-detection system that uses radio waves to determine the range, altitude, direction, or speed of objects. High power amplifier Module is the most critical part of the high-power radar transmitter systems. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. Research related to radar has been conducted in various fields according to improvement of the communication technology. But only performance-originated technology development has been dashed; study concerning environment duality and safety concerning reliability are still insufficient. In general, radar module is exposed to the outside, on the means of moving or fixed in a certain place. It should be guaranteed sufficient immunity for a variety of environmental stresses that can occur in the outdoor. HALT is a great process used for quickly finding failure mechanisms in a hardware design and product. By applying various kinds and extreme level of stresses, we can find the operating limits of products. In thesis, we conducted HALT test of the high power amplifier modules which used in military and automotive radar. After the test, we analyzed environmental weaknesses of high power amplifier modules using conventional construction data.

A Study on the Reliability Prediction about ECM of Packaging Substrate PCB by Using Accelerated Life Test (가속수명시험을 이용한 Packaging Substrate PCB의 ECM에 대한 신뢰성 예측에 관한 연구)

  • Kang, Dae-Joong;Lee, Hwa-Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.109-120
    • /
    • 2013
  • As information-oriented industry has been developed and electronic devices has come to be smaller, lighter, multifunctional, and high speed, the components used to the devices need to be much high density and should have find pattern due to high integration. Also, diverse reliability problems happen as user environment is getting harsher. For this reasons, establishing and securing products and components reliability comes to key factor in company's competitiveness. It makes accelerated test important to check product reliability in fast way. Out of fine pattern failure modes, failure of Electrochemical Migration(ECM) is kind of degradation of insulation resistance by electro-chemical reaction, which it comes to be accelerated by biased voltage in high temperature and high humidity environment. In this thesis, the accelerated life test for failure caused by ECM on fine pattern substrate, $20/20{\mu}m$ pattern width/space applied by Semi Additive Process, was performed, and through this test, the investigation of failure mechanism and the life-time prediction evaluation under actual user environment was implemented. The result of accelerated test has been compared and estimated with life distribution and life stress relatively by using Minitab software and its acceleration rate was also tested. Through estimated weibull distribution, B10 life has been estimated under 95% confidence level of failure data happened in each test conditions. And the life in actual usage environment has been predicted by using generalized Eyring model considering temperature and humidity by developing Arrhenius reaction rate theory, and acceleration factors by test conditions have been calculated.

Evaluation for Relative Safety of RC Slab Bridge of Applying Limit State Design Code on Korean Highway Bridge (도로교설계기준 한계상태설계법을 적용한 RC슬래브교의 상대 안전도 평가)

  • Park, Jin-Woo;Hwang, Hoon-Hee;Kang, Sin-Oh;Cho, Kyung-Sik;Park, Woo-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.41-48
    • /
    • 2013
  • This paper is intended to provide the background information and justification for Korean highway bridge design code(limit state design)(2012). Limit state design method calculates reliability index and probability of failure through the analysis of the reliability of the experimental database. It has become possible to perform the economical and consistent design by evaluating the safety of a structure quantitatively. In this paper, we used the design specifications of RC slab bridge of superstructure form of Road Design Manual in Part 5 bridge built in highway bridge. This study conducted structural analysis using the method of frame structure theory, design and analysis of bridge by limit state design method, the design code including various standards and Load model applied Korean highway bridge design code limit state design(KHBDC;2012). As a result, it analyzed the effect of safety through comparison. Showing effect of improvement the safety factor and comparing the value of the result, it is determined to be capable of economical design and safety. Furthermore, limit state design method was able to determine many redundant force of cross-section compared with existing design method. It is determined that it can reduce the overall amount because of the reduction of the cross-section and girder depth.

The plant fault diagnostic system of the using fuzzy FTA (퍼지 FTA를 이용한 설비고장진단 시스템)

  • 박주식;김길동;박상민
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.05a
    • /
    • pp.207-215
    • /
    • 2000
  • This study deals with the application of knowledge-engineering and a methodology for the assessment & measurement of reliability, availability, maintainability, and safety of industrial systems using fault-tree representation. A fuzzy methodology for fault-tree evaluation seems to be an alternative solution to overcome the drawbacks of the conventional approach(insufficient information concerning the relative frequences of hazard events). To improve the quality of results, the membership functions must be approximated based on heuristic considerations. The purpose of this Is to describe the knowlwdge engineering approach, directed to integrate the various sources of knowledge involved in a FTA.

  • PDF