• Title/Summary/Keyword: relaxation motion / time

Search Result 56, Processing Time 0.023 seconds

Magnetic Field Dependence of Brownian Motion in Iron-oxide Nanoparticles (산화철 나노입자의 브라운 운동에 대한 자기장 의존성 연구)

  • Jung, Eun Kyung;Yoon, Seok Soo;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.1
    • /
    • pp.13-18
    • /
    • 2016
  • The ac magnetic susceptibility was measured in iron-oxide nanoparticles with average size of 26 nm, which were uniformly dispersed in organic solvent. The ac magnetic susceptibility measured under zero magnetic fields was well fitted with Debye relaxation model and the relaxation frequency was 370 Hz. The relaxation frequency of the nanoparticles coincided with relaxation time of the Brownian motion, which is due to the viscosity of the liquid medium in which magnetic nanoparticles dwell. The Brown relaxation frequencies were linearly increased with magnetic field.

Relaxation Behavior of a Microbubble under Ultrasonic Field (초음파장하에서 미소기포의 완화적 거동)

  • Karng, Sarng-Woo;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.550-555
    • /
    • 2000
  • Nonlinear oscillation of a microbubble under ultrasound was investigated theoretically. The bubble radius-time curves calculated by the Rayleigh-Plesset equation with a polytropic index and by the Keller-Miksis equation with the analytical solution for the Navier-Stokes equations of the gases were compared with the observed results by the light scattering method. This study has revealed that the bubble behavior such as the expansion ratio and the bouncing motion after the first collapse under ultrasound depends crucially on the retarded time of the bubble motion to the applied ultrasound.

  • PDF

Development of a Human Motion Analyzer (인체 동작 분석기의 개발)

  • 김민기;김성호
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.217-222
    • /
    • 1995
  • We propose some applications of image processing techniques to extract quantitative measurements by using a camera system developed in Korea university and Catholic Medical School. From now on the system will be called as KCMOTION. The purpose of this study is to provide basic kinematic and kinetic data for the analysis of human movements and to find the clinical usefulness and reliability of the proposed motion analysis system. Two tests, sit-to-stand (STS) movements and pendulum test, are conducted by the system. The aims of the tests are to identify variability and reliability of KCMOTION to give some quantitative comparisons to the other systems. The result of STS movement are compared to the LOCUS IIID motion analyzer by the ratio of maximum flexion movement per body weight to the actual maximum flexion extension torque per body weight. That result in 29 % and 33 % for hip and knee joint, respectively in KCMOTION and 27 % and 30 % in LOCUS IIID System. The results of the pendulum movements are compared to that of using Cybex and Electrogoniometer with relaxation index, amplitude ratio, swing number and swing time. The results of relaxation index and amplitude ratio of the KCMOTION are between those of the Cybex and Electrogoniometer. We also observed that the KCMOTION detect more natural movement, from the results of swing number and time.

  • PDF

^1H NMR Relaxation Study of Molecular Motion in the Paraelectric Phase of (NH4)2Cd2(SO4)3 Single Crystals

  • Lim, Ae-Ran;Jung, Won-Ki
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.1
    • /
    • pp.18-27
    • /
    • 2010
  • The NMR spectrum and spin-lattice relaxation times, $T_1$, of the $^{1}H$ nuclei in $(NH_{4})_{2}Cd_{2}(SO_{4})_{3}$ single crystals were obtained. The two minima in $T_1$ in the paraelectric phase are attributed to the reorientational motions of the $NH_{4}^{+}$ groups. The $^{1}H\;T_1$ of the $(NH_{4})_{2}Cd_{2}(SO_{4})_{3}$ crystals can be described with Bloembergen- Purcell-Pound (BPP) theory. The experimental value of $T_1$ can be expressed in terms of an isotropic correlation time ${\tau}_H$ for molecular motions by using the BPP theory, and determine the role of protons in these processes.

Effect of 1Hz Motor Nerve Electrical Stimulation on Joint Range of Motion

  • Jong Ho Kang
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.409-413
    • /
    • 2022
  • Objective: This study aims to compare the range of motion of the joints by applying the contraction and relaxation techniques used in manual therapy as electrical stimulation treatment. Based on this, we would like to propose the possibility of using motor nerve electrical stimulation therapy for musculoskeletal physical therapy. Design: Single-arm interventional study Methods: Active and passive straight leg raising tests were performed on 20 healthy men and women in their 20s to measure the angle of hip joint flexion. Then, the electrical stimulation time was set to 10 seconds and 5 seconds of rest, and motor nerve electrical stimulation of 1 Hz was applied with the maximum strength that could withstand the hamstring muscles for 10 minutes. After electrical stimulation, straight leg raising tests again to confirm the range of motion of the hip joint flexion. Results: As a result of this study, it was confirmed that the joint range of motion was significantly improved for both active and passive straight leg raising tests after application of motor nerve electrical stimulation(p<.05). Conclusions: With a strong electrical stimulation treatment of 1 Hz, the effect similar to the contraction and relaxation technique used in manual therapy was confirmed through the joint range of motion. In the future, motor nerve electrical stimulation therapy can be used for musculoskeletal physical therapy to provide a new approach for patients with reduced pain and joint range of motion due to muscle tension.

Dielectric Characterization of Unsaturated Polyester Curing (불포화 폴리에스터의 경화에 따른 유전특성 연구)

  • 오경성;김홍경;김명덕;남재도
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.728-736
    • /
    • 2002
  • The thermal and dielectric properties of unsaturated polyester resin system during cure were analyzed under Isothermal conditions. Both $varepsilon$′ and $varepsilon$" decreased and dipole relaxation was observed under isothermal conditions during cure. The ionic conductivity decreased linearly with the conversion according to the Kienle-Rate equation (ln($varepsilon$"$_{ionic}$we$_{0}$)=C$_{r}$$alpha$+C$_{0}$) up to $alpha$=0.15, after which it aparted from the relationship due to the entanglement of polymer chains. The effect of ionic conductivity was revealed to be larger than that of dipole motion during the whole cure through the electrical modulus analysis. Although dielectric motion was analyzed with Debye model, it was observed only at a narrow time region of middle stage of cure. In order to estimate the dielectric properties during the whole cure, the Havriliak-Negami model was considered and modified with the strong effect of ionic conductivity. The changes of $varepsilon$′ and $varepsilon$" were well estimated with this modified Havriliak-Negami model.

What is the Optimal Contraction Intensity and Duration in the Performance of Relaxation Techniques for Maximal Increase of Range of Motion? (관절가동범위 증진을 위한 이완 기법의 적절한 수축강도와 수축시간은?)

  • Shin, Seung-Sub
    • PNF and Movement
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • Purpose: The purpose of this study was to review articles in order to establish optimal contraction intensity and duration in the performance of relaxation techniques for maximal increase in range of motion. Methods: The Cochrane, EBSCO, Embase, Medline, ProQuest, PubMed, ScienceDirect, and Scopus databases were used to search articles from 1990 to January 2016. The search terms were "contract relax," "hold relax," "muscle energy technique (MET)," and "proprioceptive neuromuscular facilitation (PNF) stretching." Only experimental human studies (randomized controlled trials) that compared the effects of varying intensity and duration of isometric contraction were included. Non-English language and unpublished studies were excluded. Results: A total of 2,156 articles were initially identified, with only five eventually meeting the inclusion and exclusion criteria. Three studies compared the effects of varying intensity in isometric contraction and two studies compared the effects of varying duration in isometric contraction with regard to range of motion (ROM). Two articles suggested that submaximal voluntary isometric contraction was more effective than maximum voluntary isometric contraction (MVIC) in the improvement of ROM. One article showed that a longer contraction time led to greater increases in ROM. Conclusion: Submaximal voluntary isometric contraction was recommended during contract-relax exercises in healthy people. Lack of evidence makes it difficult to suggest the optimal duration of isometric contraction during relaxation techniques. For future research, high-quality evidence will be needed to establish the optimal contraction intensity for maximum improvement of ROM.

A Study on The Relationship between TSC Properties and Structural Changes of Epoxy Composites Materials (에폭시 복합체의 TSC특성파 구조변화사이의 상관성 연구)

  • 왕종배;박준범;박경원;신철기;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.75-79
    • /
    • 1993
  • The Thermally Stimulated Current(TSC) method has been allied to study the influence of the structural change and interface on the electrical properties of epoxy composites. Three DGBA- MeTHPA matrix model samples mixed different ratios arts silica(SiO$_2$) filled sample and silaln treating-filled sample have been studied. Above room temperature, the relaxation mode ${\alpha}$ peak associated with T$\_$g/ has been located at 110$^{\circ}C$. Below glass transition temperature(T$\_$g/), three relaxation modes are observed in all samples : a ${\beta}$ mode situated at 10$^{\circ}C$, a ${\gamma}$ mode located at -40$^{\circ}C$ and a $\delta$mode appeared in -120$^{\circ}C$, which may be due to segmental motion, side chains, substitution and terminal groups. The analysis of its fine structure indicates that constitution of elementary processes is characterized by the activation energy and relaxation time. Also the change of the molecular structure and their thermal motion are compared with the relaxation mode and conduction mechanism in TSC spectra through the dielectric properties and FTIR measurements.

  • PDF

Relaxation Matching Algorithm Based on Global Structure Constraint Satisfaction (전역 구조 구속 조건에 기초한 Relaxation Matching 알고리즘)

  • Chul, Hur;Jeon, Yang-Bae;Kim, Seung-Min;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.706-711
    • /
    • 2001
  • This paper represents a relaxation matching algorithm based on global structure constraint satisfaction. Relaxation matching algorithm is a conventional approach to the matching problem. However, we confronted some problems such as null-matching and multi-matching problems by just using the relaxation matching technique. In order to solve the problems, in this paper, the matching problem is regarded as constraint satisfaction problem, and a relaxation matching algorithm is proposed based on global structure constraint satisfaction. The proposed algorithm is applied a landslide picture to show the effectiveness. When the algorithm is processed at landslide inspecting and monitoring system, motion parameters such as displacement area and its direction are computed. Once movement is recognized, displacements are estimated graphically with statistical amount in the image plane. Simulation has been done to prove the proposed algorithm by using time-sequence image of landslide inspection and monitoring system.

  • PDF

A Study on Locational Control of Motion Ghost in Magnetic Imaging System (자기공명영상장치(磁氣共鳴映像裝置)에서 움직임허상(虛像)의 위치제어(位置制御)에 관(關)한 연구(硏究))

  • Lee, Who-Min
    • Journal of radiological science and technology
    • /
    • v.16 no.2
    • /
    • pp.19-26
    • /
    • 1993
  • Magnetic Resonance Image represents three-dimensional diagnostic imaging technique using both nuclear magnetic resonance phenomenon and computer. Compared with computed tomography (CT), MRI have advantages harmless to patient's body, three-dimensional image with high resolution and disadvantages long data acquisition time because of long T1 relaxation time, relatively low signal to noise ratio, high cost of setting, also. As physiologic motion of tissue results in motion ghost in MRI, high 2.0Tesla make improve low signal to noise ratio. This study have aim to improve image quality with controling motion ghost of tissue. Supposing a moving pixel in constant frequency, one pixel make two ghosts which are same size and different anti-phase. So, this study will show adjust parameter on locational control of motion ghost. Author made moving phantom replaced by respiratory movement of human, researched change of motion frequency, FOV by location shift, and them decided optimal FOV (field of view). The results are as follows: 1. The frequency content of the motion determines how far the image always appear in phase-encoding direction, the morphology of the ghost image is characteristic of the direction of the motion and its amplitude. 2. Double FOV of fixed signal object for locational control of motion ghost is recommended. Decreasement of spatial resolution by increasing FOV can compensate on increasing of matrix in spite of scan time increasement.

  • PDF