DOI QR코드

DOI QR Code

Magnetic Field Dependence of Brownian Motion in Iron-oxide Nanoparticles

산화철 나노입자의 브라운 운동에 대한 자기장 의존성 연구

  • Received : 2016.01.25
  • Accepted : 2016.02.17
  • Published : 2016.02.29

Abstract

The ac magnetic susceptibility was measured in iron-oxide nanoparticles with average size of 26 nm, which were uniformly dispersed in organic solvent. The ac magnetic susceptibility measured under zero magnetic fields was well fitted with Debye relaxation model and the relaxation frequency was 370 Hz. The relaxation frequency of the nanoparticles coincided with relaxation time of the Brownian motion, which is due to the viscosity of the liquid medium in which magnetic nanoparticles dwell. The Brown relaxation frequencies were linearly increased with magnetic field.

유기 용매에 고르게 분산되어 있는 26 nm 크기의 산화철 나노입자를 사용하여 주파수에 따른 교류 자화율을 측정하였다. 자기장이 없는 조건에서 측정한 나노입자의 자화율은 Debye 완화 모델로 계산한 결과와 일치하였으며, 완화 주파수(relaxation frequency)는 370 Hz였다. 나노입자의 완화 주파수는 용매의 점성에 의한 브라운 운동(Brownian motion)의 완화 시간과 일치하였다. 브라운 운동에 의한 나노입자의 완화 주파수는 자기장의 세기에 따라 선형적으로 증가하는 특성을 보였다.

Keywords

References

  1. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, and R. N. Muller, Chem. Rev. 108, 2064 (2008). https://doi.org/10.1021/cr068445e
  2. N. K. Prasad, K. Rathinasamy, D. Panda, and D. Bahadur, J. Biomed. Mater. Part B: Appl. Biomater. 85B, 409 (2007).
  3. R. Hergt, S. Dutz, and M. Zeisberger, Nanotechnology 21, 015706 (2010). https://doi.org/10.1088/0957-4484/21/1/015706
  4. I. Hilger, W. Andera, R. Hergt, R. Hiergeist, H. Schubert, and W. A. Kaiser, Radiology 218, 570 (2001). https://doi.org/10.1148/radiology.218.2.r01fe19570
  5. J. Kliava and R. Berger, J. Magn. Magn. Mater. 205, 328 (1999). https://doi.org/10.1016/S0304-8853(99)00510-7
  6. Y. M. Jang and M. J. Hwang, J. Soc. Magn. Reson. Med. 7, 39 (2003).
  7. S. Vasseur, E. Duguet, J. Portier, G. Goglio, S. Mornet, E. Hadova, K. Knizek, M. Marysko, P. Veverka, and E. Pollert, J. Magn. Magn. Mater. 302, 315 (2006). https://doi.org/10.1016/j.jmmm.2005.09.026
  8. S. N. Ahmad, Y. Akin, and S. A. Shaheen, J. Appl. Phys. 97, 10Q902 (2005). https://doi.org/10.1063/1.1849052
  9. J. Carrey, B. Mehdaoui, and M. Respaud, J. Appl. Phys. 109, 083921 (2011). https://doi.org/10.1063/1.3551582
  10. B. H. Erne, M. Claesson, S. Sacanna, M. Klokkenburg, E. Bakelaar, and B. W. M. Kuipers, J. Magn. Magn. Mater. 311, 145 (2007). https://doi.org/10.1016/j.jmmm.2006.11.169
  11. R. M. Ferguson, A. P. Khandhar, C. Jonasson, J. Blomgren, C. Johansson, and K. M. Krishnan, IEEE Trans Magn. 49, 3442 (2013).
  12. P. C. Fannin, L. C. Tannoudji, E. Bertrand, A. T. Giannitsis, C. M. Oireachtaigh, and J. Bibette, J. Magn. Magn. Mater. 303, 147 (2006). https://doi.org/10.1016/j.jmmm.2005.07.035
  13. S. Berkum, J. T. Dee, A. P. Philipse, and Ben H. Erne, Int. J. Mol. Sci. 14, 10162 (2013). https://doi.org/10.3390/ijms140510162
  14. https://en.wikipedia.org/wiki/Dielectric#Debye_relaxation.
  15. G. F. Dionne, IEEE Trans. Magn. 39, 3121 (2003). https://doi.org/10.1109/TMAG.2003.816026