DOI QR코드

DOI QR Code

^1H NMR Relaxation Study of Molecular Motion in the Paraelectric Phase of (NH4)2Cd2(SO4)3 Single Crystals

  • Lim, Ae-Ran (Department of Science Education, Jeonju University) ;
  • Jung, Won-Ki (School of Electrical Engineering Jeonju University)
  • Received : 2010.04.13
  • Published : 2010.06.20

Abstract

The NMR spectrum and spin-lattice relaxation times, $T_1$, of the $^{1}H$ nuclei in $(NH_{4})_{2}Cd_{2}(SO_{4})_{3}$ single crystals were obtained. The two minima in $T_1$ in the paraelectric phase are attributed to the reorientational motions of the $NH_{4}^{+}$ groups. The $^{1}H\;T_1$ of the $(NH_{4})_{2}Cd_{2}(SO_{4})_{3}$ crystals can be described with Bloembergen- Purcell-Pound (BPP) theory. The experimental value of $T_1$ can be expressed in terms of an isotropic correlation time ${\tau}_H$ for molecular motions by using the BPP theory, and determine the role of protons in these processes.

Keywords

References

  1. B. Brezina, M. Glogarova, Phys. Stat. Sol. (a) 11, k39-k42, (1972). https://doi.org/10.1002/pssa.2210110149
  2. M. Glogarova, J. Fousek, Phys. Stat. Sol. (a) 15, 579-590, (1973). https://doi.org/10.1002/pssa.2210150227
  3. T. Ikeda, G. Yasuda, Jap. Appl. Phys. 14, 1287-1291, (1975). https://doi.org/10.1143/JJAP.14.1287
  4. T. Hikita, S. Sato, H. Sekiguchi, T. Ikeda, J. Phys. Soc. Japan 42, 1656-1659, (1977). https://doi.org/10.1143/JPSJ.42.1656
  5. T. Hikita, M. Kitbatake, T. Ikeda, J. Phys. Soc. Japan 49, 1421-1428, (1980). https://doi.org/10.1143/JPSJ.49.1421
  6. F. Jona, R. Pepinsky, Phys. Rev. 103, 1126, (1956).
  7. H. Ohshima, E. Nakamura, J. Phys. Chem. Solids 27, 481-486, (1966). https://doi.org/10.1016/0022-3697(66)90188-0
  8. K. Aizu, J. Phys. Soc. Japan 32, 135-142, (1972). https://doi.org/10.1143/JPSJ.32.135
  9. A. Zemann, J. Zemann, Acta Cryst. 10, 409-413, (1957). https://doi.org/10.1107/S0365110X57001346
  10. S. Kreske, V. Devarajan, J. Phys. C: Solid State Phys. 15, 7333-7350, (1982). https://doi.org/10.1088/0022-3719/15/36/015
  11. V.N. Efimov, V.G. Stepanov, Izv. Akad. Nauk SSSR. 51, 398-400, (1987).
  12. M. Glogarova, Phys. Stat. Sol. (a) 22, k69-k71, (1974). https://doi.org/10.1002/pssa.2210220159
  13. I. Todo, I. Tatsuzaki, Phys. letters 23, 519-520, (1966). https://doi.org/10.1016/0031-9163(66)90386-6
  14. J. Cho, S. Ahn, J. Kor. Magn. Reson. 11, 1 (2007).
  15. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford.,1961).
  16. K.S. Han, M. Lee, J. Kor. Magn. Reson. 13, 135, (2009). https://doi.org/10.6564/JKMRS.2009.13.2.135
  17. N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679-712, (1948). https://doi.org/10.1103/PhysRev.73.679
  18. C. Dimitropoulos, J. Pelzl, F. Borsa, Phys. Rev. B 41, 3914-3919, (1990). https://doi.org/10.1103/PhysRevB.41.3914
  19. D.E. O’Reilly, E.M. Peterson, T. Tsang, Phys. Rev. 160, 333-342, (1967). https://doi.org/10.1103/PhysRev.160.333
  20. R.K. Harris, Nuclear Magnetic Resonance Spectroscopy (Pitman Publishing Inc.,London, 1983).

Cited by

  1. Nuclear Magnetic Resonance Study of the Raman Spin-Phonon Processes in the Relaxation Mechanisms of Double Sulfate Li3Rb(SO4)2Single Crystals vol.15, pp.1, 2011, https://doi.org/10.6564/JKMRS.2011.15.1.040