• Title/Summary/Keyword: relative angle

Search Result 806, Processing Time 0.026 seconds

Study on the Concentration Estimation Equation of Nitrogen Dioxide using Hyperspectral Sensor (초분광센서를 활용한 이산화질소 농도 추정식에 관한 연구)

  • Jeon, Eui-Ik;Park, Jin-Woo;Lim, Seong-Ha;Kim, Dong-Woo;Yu, Jae-Jin;Son, Seung-Woo;Jeon, Hyung-Jin;Yoon, Jeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.19-25
    • /
    • 2019
  • The CleanSYS(Clean SYStem) is operated to monitor air pollutants emitted from specific industrial complexes in Korea. So the industrial complexes without the system are directly monitored by the control officers. For efficient monitoring, studies using various sensors have been conducted to monitor air pollutants emitted from industrial complex. In this study, hyperspectral sensors were used to model and verify the equations for estimating the concentration of $NO_2$(nitrogen dioxide) in air pollutants emitted. For development of the equations, spectral radiance were observed for $NO_2$ at various concentrations with different SZA(Solar Zenith Angle), VZA(Viewing Zenith Angle), and RAA(Relative Azimuth Angle). From the observed spectral radiance, the calculated value of the difference between the values of the specific wavelengths was taken as an absorption depth, and the equations were developed using the relationship between the depth and the $NO_2$ concentration. The spectral radiance mixed gas of $NO_2$ and $SO_2$(sulfur dioxide) was used to verify the equations. As a result, the $R^2$(coefficient of determination) and RMSE(Root Mean Square Error) were different from 0.71~0.88 and 72~23 ppm according to the form of the equation, and $R^2$ of the exponential form was the highest among the equations. Depending on the type of the equations, the accuracy of the estimated concentration with varying concentrations is not constant. However, if the equations are advanced in the future, hyperspectral sensors can be used to monitor the $NO_2$ emitted from the industrial complex.

Study of Hypervelocity Penetration Characteristics of Segmented Tungsten Penetrator (분절형 텅스텐 관통자의 초고속 관통특성에 관한 연구)

  • Jo, Jong Hyun;Lee, Young Shin;Kim, Jae Hoon;Bae, Yong Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.953-960
    • /
    • 2013
  • This study aimed to investigate the penetration characteristics of a segmented penetrator with normal and inclined angles. The length to diameter ratio (L/D) of the segmented penetrator was varied as 1.0, 0.5, and 0.25. Moreover, impact velocities of 1.5, 2.0, and 2.5 km/s and inclination angles of $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$ were successively applied. The AUTODYN-3D code was used to simulate the penetration performance of the segmented penetrator. The results show that the penetration performance of the segmented penetrator with steel plates was obviously higher than that of the corresponding continuous penetrator with steel plates. The outstanding penetration performance of the segmented penetrator can be observed when the impact velocity was 2.0 km/s and L/D = 1. In this case, the penetration performance of the segmented penetrator was 7% higher than that of the corresponding continuous penetrator. This trend was attributable to the interaction between the reactive plate and the projectile. The extent of the interaction relies on the relative velocities of the plate and projectiles, inclination angle, and number of segmented penetrators. It was proven that the penetration performance of the segmented penetrator can be improved by increasing the impact velocity, number of segmented penetrators between segments, and penetrator length.

A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area (퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구)

  • Kim, Jin Yeob;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.301-312
    • /
    • 2013
  • Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area.

The Evaluation for Pullout Performance of Steel Strip Reinforcements with Deformed-Bars as Transverse Members (지지부재로 이형철근을 설치하는 띠형 강보강재의 인발성능 평가)

  • Jung, Sung-Gyu;Kim, Juhyong;Cho, Samdeok;Lee, Kwangwu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.77-86
    • /
    • 2013
  • Laboratory pullout tests were conducted to evaluate pullout performance of steel strip reinforcements with deformed steel bars as transverse members. The steel strip reinforcement has an installation hole to assemble a deformed steel bar. Jumunjin standard sand is used to form a relative density of ground model to 80%. Frictional resistance of steel strip reinforcement without transverse member increases sharply at the initial displacement and quickly decreases with displacement. Maximum frictional resistance increases linearly as normal pressure increasing, and soil-reinforcement interaction friction angle(${\rho}_{peak}$) of a steel strip reinforcement is estimated to $14.64^{\circ}$. Passive resistance increases with displacement and converge into maximum passive resistance in most cases. Maximum passive resistance increases linearly as normal pressure increasing irrespective of shape of the steel reinforcement. Pullout force of steel strip reinforcements with installation holes or transverse members largely increases about 4 to 7 times compared to frictional resistance force of steel strip reinforcements when embedment length($L_e$) of steel strip reinforcements is 500 mm. In the case of using 2 transverse members, interference effect is observed due to the spacing of 2 transverse members and location of assembly holes and transverse members.

Soft tissue changes associated with ASO/BSSRO and Le Fort I/BSSRO in skeletal Class III malocclusion with upper lip protrusion (상순돌출을 동반한 골격성 III급 부정교합에서 수술방법에 따른 치료 후 상악 연조직 변화 - ASO/BSSRO와 Le Fort I/BSSRO 비교)

  • Kang, Ju-Man;Kim, Yoon-Ji;Park, Je-Uk;Kook, Yoon-Ah
    • The korean journal of orthodontics
    • /
    • v.40 no.6
    • /
    • pp.383-397
    • /
    • 2010
  • Objective: The objective of this study was to compare maxillary soft tissue changes and their relative ratios to hard tissue changes after anterior segmental osteotomy (ASO)/bilateral sagittal split ramus osteotomy (BSSRO) and Le Fort I/BSSRO in skeletal Class III malocclusion with upper lip protrusion. Methods: The study sample comprised the ASO/BSSRO group (n = 14) and the Le Fort I/BSSRO group (n = 15). The Le Fort I/BSSRO group included cases of maxillary posterior impaction only. Lateral cephalograms were taken 2 months before and 6 months after surgery. Linear and angular measurements were performed. Results: The anterior maxilla moved backward in both groups after surgery, however the amount of change was significantly larger in the ASO/BSSRO group (p < 0.01). The ratios of hard to soft tissue change were 79% (SLS to A point), 80% (LS to A point) in the ASO/BSSRO group, and 15% (SLS to A point), 68% (LS to A point) in the Le fort I/BSSRO group. In addition, there was a $3.23^{\circ}$ increase of the occlusal plane in the Le Fort I/BSSRO group. Conclusions: When two-jaw surgery is indicated in skeletal Class III patients with protrusive lips, ASO may be a treatment of choice for cases with more severe upper lip protrusion, while Le Fort I with posterior impaction may be considered if an increase of occlusal plane angle is required.

A Study on the Influence of S Shaped Annular Duct on the Centrifugal Compressor Performance (S자형 환형덕트가 원심압축기 성능에 미치는 영향에 관한 연구)

  • 정주현;전승배;김승우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.64-73
    • /
    • 1998
  • In twin spool aero-engine, there may be a S shaped annular duct between high pressure and low pressure spools. The flow passing this S shaped duct experiences the flow acceleration and deceleration due to the convex and concave surface of the duct as well as the increase of blockage according to the boundary layer growth along the surfaces. So, the high pressure compressor which is located behind the S shaped duct is influenced by the non-uniform flow field generated by the geometry of inlet duct. To study the influence of the S shaped duct on the centrifugal stage, performance tests were implemented for the compressor with straight cylindrical inlet duct and with S shaped inlet duct, respectively. The test results showed that the performance, such as pressure ratio and efficiency, of the compressor with S shaped duct was worse than that of the compressor with cylindrical duct. And the compressor with S shaped duct had reduced maximum flow rate around design speed. To investigate the cause of performance degradation, flow anlaysis was performed for the impeller in front of which is located S shaped annular duct. The result of CFD showed the strong acceleration of the flow in the axial direction around the inducer tip region which caused the increase of relative mach number and the decrease of incidence angle of the flow.

  • PDF

Application and its Reinforcing Effect of Soil Nailed-drilled Shafts (쏘일 네일(soil nail)로 보강된 현장타설말뚝의 적용성 및 보강효과 분석)

  • 김병철;이대수;김대홍;정상섬;김대학
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.87-98
    • /
    • 2004
  • In this study reinforcing effect of soil nailed-drilled shafts subjected to axial and lateral loads was evaluated. Special attention was given to the reinforcing effects of soil nails placed from the drilled shafts to surrounding weathered- and soft-rocks based on model tests, numerical analyses and field tests. The model tests and numerical analyses are conducted to analyze the reinforcing effect of various conditions of number, inclination, position and length. The results of 1/40 scale model tests and numerical analyses show that as the number of reinforcing level increases, the incremental effect of reinforcement tends to increase, whereas the reinforcing effect on relative position is negligible. In addition there is a reinforcing effect as the inclination angle increase up to 30 degrees. Based on the results of tensile load tests, soil nailed-drilled shaft has a considerably smaller settlement to reach the ultimate level compared with the result of un-reinforced drilled shafts. For compression tests, there is a reinforcing effect of about 200% measured.

Robust 3-D Motion Estimation Based on Stereo Vision and Kalman Filtering (스테레오 시각과 Kalman 필터링을 이용한 강인한 3차원 운동추정)

  • 계영철
    • Journal of Broadcast Engineering
    • /
    • v.1 no.2
    • /
    • pp.176-187
    • /
    • 1996
  • This paper deals with the accurate estimation of 3- D pose (position and orientation) of a moving object with reference to the world frame (or robot base frame), based on a sequence of stereo images taken by cameras mounted on the end - effector of a robot manipulator. This work is an extension of the previous work[1]. Emphasis is given to the 3-D pose estimation relative to the world (or robot base) frame under the presence of not only the measurement noise in 2 - D images[ 1] but also the camera position errors due to the random noise involved in joint angles of a robot manipulator. To this end, a new set of discrete linear Kalman filter equations is derived, based on the following: 1) the orientation error of the object frame due to measurement noise in 2 - D images is modeled with reference to the camera frame by analyzing the noise propagation through 3- D reconstruction; 2) an extended Jacobian matrix is formulated by combining the result of 1) and the orientation error of the end-effector frame due to joint angle errors through robot differential kinematics; and 3) the rotational motion of an object, which is nonlinear in nature, is linearized based on quaternions. Motion parameters are computed from the estimated quaternions based on the iterated least-squares method. Simulation results show the significant reduction of estimation errors and also demonstrate an accurate convergence of the actual motion parameters to the true values.

  • PDF

Run-off Impact Assessment of the Steeped Cornfield to Small Stream

  • Shin, Joung-Du;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;So, Kyu-Ho;Lee, Jung-Teak;Lee, Myong-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.334-340
    • /
    • 2005
  • This experiment was conducted to evaluate the nutrient loss and to assess the eutrophication into small stream by intensive rains in the steeped cornfield during cultivation. The crop cultivated was a soiling com (DW5969), and the experimental plots were divided into two parts that were 10 and 18% of slope degrees. The amount of T-N and T-P loss was calculated by analysis of surface run-off water quality, and was investigated the effect of eutrophication to small stream as a part of life cycle assessment (LCA) methodology application. For the surface run-off water quality, EC and T-N values were highest in first runoff event as compared to the other events and maintained the stage state with litter variations at every hour during the runoff period except for EC in the slope 18%. However, T-P concentration has been a transient stage after runoff event of July 27. Total surface run-off ratio was not significantly different with slope degrees, but amount of T-N and T-P losses at 18% of slope were high as $5.96kg\;ha^{-1}\;and\;0.65kg\;ha^{-1}$ as relative to 10% of slope degree, respectively. Furthermore, T-N losses from run-off water in the sloped cornfield 10 and 18% were approximately 9.8 and 12.5% of the N applied as fertilizer when the fertilizer applied at recommended rates after soil test, respectively. For the eutrophication impact to the small stream, it was shown that $PO_4$ equivalence and Eco-indicator value at 18% of slope degree were greater as much $6.11kg\;ha^{-1}$ and 0.81 as compared to the slope angle 10%, respectively. Therefore, it was appeared that each effect of nutrient losses, eutrophication and Eco-indicator value was enhanced according with higher slope degree.

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.