DOI QR코드

DOI QR Code

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data

Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출

  • Kang, Ki-Mook (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Duk-Jin (School of Earth and Environmental Sciences, Seoul National University)
  • 강기묵 (서울대학교 지구환경과학부) ;
  • 김덕진 (서울대학교 지구환경과학부)
  • Received : 2012.12.06
  • Accepted : 2013.02.13
  • Published : 2013.02.28

Abstract

Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.

인공위성 Synthetic Aperture Radar(SAR)는 물리해양학적 현상을 정량적으로 관측하는데 가장 유용한 도구 중의 하나이다. SAR의 도플러 편이(Doppler shift) 현상은 센서와 해양표면 유체와의 상대적인 움직임 차이로 인해 발생될 수 있다. 따라서, 단 채널 SAR 원시자료에 기록된 도플러 정보는 해양의 유체 이동속도를 추정하는데 유용하다. 유체의 이동속도는 측정된 도플러 중심주파수(estimated Doppler centroid)와 예측된 도플러 중심주파수(predicted Doppler centroid) 사이의 차이를 측정함으로써 계산될 수 있다. 예측된 도플러 중심주파수는 표적이 움직이지 않는다고 가정했을 때의 중심주파수로서 위성의 궤도, 시선 각, 자세 등과 같은 기하모델을 통해 계산될 수 있고, 측정된 도플러 중심주파수는 실제 SAR 촬영시 표적의 움직임에 해당하는 도플러 중심주파수로서 원시자료에 기록된 정보를 이용하고 평균상관계수법(Average Cross Correlation Coefficient; ACCC)을 적용하여 추출될 수 있다. 이렇게 추출된 도플러 속도에서 브래그 공명을 일으키는 표면 장력파의 위상속도를 제거하여 좀더 정밀한 표층 해류의 속도를 추출하였다. 이러한 기법들을 동해를 촬영한 Envisat ASAR 원시자료에 적용하였으며, 추출된 해류속도를 HF-radar에서 관측한 해류속도와 비교하였다.

Keywords

References

  1. Alpers, W. and I. Hennings, 1984. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar, Journal of Geophysical Research: Oceans, 89(C10): 529-546.
  2. Chapron, B., C. Fabrice, and A. Fabrice, 2005. Direct measurements of ocean surface velocity from space: Interpretation and validation, Journal of Geophysical Research, 110(C7): 1-17.
  3. Cumming, I., 2004. A spatially selective approach to Doppler estimation for frame-based SAR processing, IEEE Transactions on Geoscience and Remote Sensing, 42(6): 1135-1148. https://doi.org/10.1109/TGRS.2004.825577
  4. Cumming, I. and F.H. Wong, 2005. Digital Processing of Synthetic Aperture Radar Data Algorithms and Implementation, Norwood, MA, USA
  5. Davidson, G.W. and I. Cumming, 1997. Signal properties of spaceborne squint-mode SAR, IEEE Transactions on Geoscience and Remote Sensing, 35(3): 611-617. https://doi.org/10.1109/36.581976
  6. Graber, H.C., D.R. Thompson, and R.E. Carande, 1996. Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar, Journal of Geophysical Research: Oceans, 101(C11): 813-832.
  7. Hansen, M.W., F. Collard, K. Dagestad, J.A. Johannessen, P. Fabry, and B. Chapron, 2011. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements, IEEE Transactions on Geoscience and Remote Sensing, 49(10): 3582-3592. https://doi.org/10.1109/TGRS.2011.2153864
  8. Jin, M.Y., 1996. Optimal range and Doppler centroid estimation for a ScanSAR system, IEEE Transactions on Geoscience and Remote Sensing, 34(2): 479-488. https://doi.org/10.1109/36.485125
  9. Kang, M.-K., Y.-W. Park, H. Lee, and M. Lee, 2007. Study on the extraction of ocean parameters using SAR image data, Proc. of the KSRS spring conference, 198-203.
  10. Kim, D.-J., W.M. Moon, D. Moller, and D.A. Imel, 2003. Measurements of ocean surface waves and currents using L- and C-band along-track interferometric SAR, IEEE Transactions on Geoscience and Remote Sensing, 41(12): 2821-2832. https://doi.org/10.1109/TGRS.2003.817210
  11. Kim, D.-J., 2010. Current status of space-borne SAR system and ocean remote sensing, Journal of Korean Society of Coastal and Ocean Engineers, 3(1): 16-37.
  12. Koh, B.-Y., W.-S. Ra, and Y.-W. Lee, 2003. Radarsat-1 Doppler information extraction technique using both received echo data and orbital and attitude information of satellite, Korean Journal of Remote Sensing, 19(6): 421-430(in Korean with English abstract). https://doi.org/10.7780/kjrs.2003.19.6.421
  13. Krieger, G., A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, 2007. TanDEM-X: A satellite formation for high resolution SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 45(11): 3317-3341. https://doi.org/10.1109/TGRS.2007.900693
  14. Lyzenga, D.R. and J.R. Bennett, 1988. Full-spectrum modeling of synthetic aperture radar internal wave signatures, Journal of Geophysical Research: Oceans, 93(C10): 345-354.
  15. Madsen, S., 1989. Estimating the Doppler centroid of SAR data, IEEE Transactions of Aerospace and Electronic Systems, 25(2): 134-140. https://doi.org/10.1109/7.18675
  16. Romeiser, R. and D.R. Thompson, 2000. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents, IEEE Transactions on Geoscience and Remote Sensing, 38: 446-458. https://doi.org/10.1109/36.823940
  17. Romeiser, R., H. Breit, M. Eineder, H. Runge, P. Flament, K. Jong, and J. Vogelzang, 2005. Current measurements by SAR along-track interferometry from a space shuttle, IEEE Transactions on Geoscience and Remote Sensing, 43(10): 2315-2324. https://doi.org/10.1109/TGRS.2005.856116
  18. Shay, L.K., S.J. Lentz, H.C. Graber, and B.K. Haus, 1998. Current structure variations detected by high-frequency radar and vector-measuring current meters, Journal of Atmospheric and Oceanic Technology, 15: 237-256. https://doi.org/10.1175/1520-0426(1998)015<0237:CSVDBH>2.0.CO;2
  19. Song, J.-H., W.-K. Lee, and D.-H. Kim, 2010. Radarsat-1 ScanSAR quick-look signal processing and demonstration using SPECAN algorithm, Korean Journal of Remote Sensing, 26(2): 75-86(in Korean with English abstract). https://doi.org/10.7780/kjrs.2010.26.2.75
  20. Van der Kooij, M., W. Hughes, and S. Sato, 1999. Doppler current velocity measurements: A new dimension to spaceborne SAR data, 2nd Int. Sympo. Operat. Remote Sens., Enchede, Netherlands. August 16-20, Unpublished manuscript.
  21. Yu, D.M., A.Y. Ivanov, and S.V. Pereslegin, 2000. Retrieval of ocean current velocity field using the ERS SAR raw data, ERS-Envisat Sympo., Gothenburg, Sweden., October 16-20, Unpublished manuscript.