DOI QR코드

DOI QR Code

A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area

퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구

  • Kim, Jin Yeob (Department of Geoinformation Engineering, Sejong University) ;
  • Park, Hyuck Jin (Department of Geoinformation Engineering, Sejong University)
  • 김진엽 (세종대학교 지구정보공학과) ;
  • 박혁진 (세종대학교 지구정보공학과)
  • Received : 2013.05.07
  • Accepted : 2013.08.02
  • Published : 2013.08.28

Abstract

Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area.

산사태는 지형, 지질, 임상, 토양 등과 같은 다양한 요인들이 복합적으로 작용하여 발생한다. 따라서 산사태 발생위치와 산사태 유발 요인 사이의 상관관계를 파악할 수 있는 다양한 분석 기법이 사용되고 있으며 본 연구에서는 산사태 위험지역을 정량적으로 예측할 수 있는 효과적인 기법을 제안하고자 퍼지관계 기법과 인공신경망 기법을 이용하여 포항지역의 산사태 취약성을 분석하였다. 취약성 분석을 위해 먼저 산사태 위치를 파악하여 현황도를 작성하였으며, 산사태 발생과 관련 있는 11개의 요인들에 대한 공간 데이터베이스를 구축하였다. 퍼지관계 기법에서는 cosine amplitude method를 이용해 각 요인 별 퍼지 소속 함수 값을 획득하고 퍼지관계 함수 연산을 이용하여 취약성도를 작성하였다. 인공신경망 기법에서는 오류 역전파 알고리즘을 이용하여 산사태와 관련 요인들 간의 상대적 가중치를 결정하고 취약성도를 작성하였다. 두 기법으로 도출된 산사태 취약성도의 ROC(Receiver Operating Characteristic)와 AUC(Area Under the Curve)를 통한 검증 결과는 82.18%와 87.4%로 나타났다. 퍼지 관계 및 인공신경망 기법 모두 높은 예측 정확도를 보여 취약성 분석 기법으로서의 적용 가능성이 있는 것으로 분석되었다. 한편 본 연구지역의 경우 인공신경망 기법이 퍼지관계 기법에 비해 좀 더 나은 예측 정확도를 보이는 것으로 분석되었다.

Keywords

References

  1. Carrara, A. (1993) Potentials and pitfalls of GIS technology in assessing natural hazard. Geographical Information System in Assessing Natural Hazards, p. 128-137.
  2. Choi, J,W., Oh, H,J., Won, J,S. and Lee, S. (2010) Validation of an artificial neural network model for landslide susceptibility mapping. Environment Earth Sciences, v.60, p.473-483. https://doi.org/10.1007/s12665-009-0188-0
  3. Choi, J.W., Oh, H.J., Lee, H.J., Lee, C.W. and Lee, S. (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology, v.124, p.12-23. https://doi.org/10.1016/j.enggeo.2011.09.011
  4. Dhakal, A.S., Amada, T. and Aniya, M. (2000) Landslide hazard mapping and its evaluation using GIS: an investigation of sampling schemes for a grid-cell based quantitative method. Engineering Remote Sensing, v.66, p.981-989.
  5. Ercanoglu, M. and Gokceoglu, C. (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area(West Black Sea Region, Turkey). Engineering Geology, v.75, p.229-250. https://doi.org/10.1016/j.enggeo.2004.06.001
  6. Fawcett, T. (2006) An introduction to ROC analysis. Pattern Recognition Letters, v.27, p.861-874. https://doi.org/10.1016/j.patrec.2005.10.010
  7. Kanungo, D.P., Arora, M.K., Sarkar, S. and Gupta, R.P. (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, v.85, p.347-366. https://doi.org/10.1016/j.enggeo.2006.03.004
  8. Kanungo, D.P, Arora, M.K, Sarkar, S. and Gupta, R.P. (2009) A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, v.3, p.30-43. https://doi.org/10.1080/17499510802541417
  9. Kim, K.S., Song, Y.S. and Cho, Y.C. (2006) Characteristics of rainfall and landslides according to the geological condition. The journal of Engineering Geology, v.16, p.201-214.
  10. Lee, S., Choi, U., Chae, U. and Chang, B. (2002a) Landslide susceptibility analysis using weight of evidence. Geosciences and Remote Sensing Symposium
  11. Lee, S., Choi, K. and Min, K. (2002b) Landslide susceptibility analysis and verification using the bayesian probability model. Environment Geology, v.43, p.120-131. https://doi.org/10.1007/s00254-002-0616-x
  12. Lee, S. (2007) Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environmental Geology, v.52, p.615-623. https://doi.org/10.1007/s00254-006-0491-y
  13. Lee, S., Ryu, J,H., Lee, M,J. and Won, J,S. (2003) Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea. Environmental Geology, v.44, p.820-833. https://doi.org/10.1007/s00254-003-0825-y
  14. Lee, S., Ryu, J,H., Won, J,S. and Park, H,J. (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology, v.71, p.289-302. https://doi.org/10.1016/S0013-7952(03)00142-X
  15. Oh, H.J. (2010) Landslide detection and landslide susceptibility mapping using aerial photos and artificial neural networks. Korean Journal of Remote Sensing, v.26, p.47-57.
  16. Paola, J.D. and Schowengerdt, R.A. (1995) A review and analysis of back-propagation neural networks for classification of remotely-sensed multi-spectral imagery. International Journal of Remote Sensing, v.16, p.3033-3058. https://doi.org/10.1080/01431169508954607
  17. Pradhan, B. (2010) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, v.38, p.301-320. https://doi.org/10.1007/s12524-010-0020-z
  18. Pradhan, B. (2011a) Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modeling. Environmental and Ecological Statistics, v.18, p.471-493. https://doi.org/10.1007/s10651-010-0147-7
  19. Pradhan, B. (2011b) Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three areas in Malaysia. Environmental Earth Sciences, v.63, p.329-349. https://doi.org/10.1007/s12665-010-0705-1
  20. Pradhan, B. and Lee, S. (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, v.60, p.1037-1054. https://doi.org/10.1007/s12665-009-0245-8
  21. Pradhan, B. and Lee, S. (2010) Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslide, v.7, p.13-30. https://doi.org/10.1007/s10346-009-0183-2
  22. Ross, T.J. (2004) Fuzzy logic with engineering applications, 2nd Edition, p.72-73.
  23. Suzen, M.L. and Doyuran, V. (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu Catchment, Turkey. Engineering Geology, v.71, p.303-321. https://doi.org/10.1016/S0013-7952(03)00143-1
  24. Um, S.H., Lee, D.W. and Bak, B.S. (1964) 1:50,000 Geological Map of Pohang Sheet. Geological Survey of Korea
  25. Vahidnia, M., Alesheikh, A., Alimohammadi, A. and Hosseinali, F. (2009) Design and development of an intelligent extension for mapping landslide susceptibility using artificial neural network. Computational Science and Its Application, v.5592, p.17-32.
  26. Van Westen, C.J. and Terlien, M.T.J. (1996) An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surface Processes, v.21, p.853-868. https://doi.org/10.1002/(SICI)1096-9837(199609)21:9<853::AID-ESP676>3.0.CO;2-C
  27. Wang, H.B. and Sassa, K. (2005) Comparative evaluation of landslide susceptibility in Minamata area, Japan. Environmental Geology, v.47, p.956-966. https://doi.org/10.1007/s00254-005-1225-2
  28. Yilmaz, I. (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environment Earth Sciences, v.61, p.821-836. https://doi.org/10.1007/s12665-009-0394-9
  29. Zadeh, L.A. (1965) Fuzzy sets. Information and Control, v.8, p.338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Cited by

  1. Assessment of Landslide Susceptibility of Physically Based Model Considering Characteristics of the Unsaturated Soil vol.47, pp.1, 2014, https://doi.org/10.9719/EEG.2014.47.1.49