DOI QR코드

DOI QR Code

Study of Hypervelocity Penetration Characteristics of Segmented Tungsten Penetrator

분절형 텅스텐 관통자의 초고속 관통특성에 관한 연구

  • Jo, Jong Hyun (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.) ;
  • Lee, Young Shin (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Jae Hoon (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.) ;
  • Bae, Yong Woon (Agency for Defense Development)
  • 조종현 (충남대학교 기계설계공학과) ;
  • 이영신 (충남대학교 기계설계공학과) ;
  • 김재훈 (충남대학교 기계설계공학과) ;
  • 배용운 (국방과학연구소)
  • Received : 2012.12.13
  • Accepted : 2013.04.12
  • Published : 2013.08.01

Abstract

This study aimed to investigate the penetration characteristics of a segmented penetrator with normal and inclined angles. The length to diameter ratio (L/D) of the segmented penetrator was varied as 1.0, 0.5, and 0.25. Moreover, impact velocities of 1.5, 2.0, and 2.5 km/s and inclination angles of $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$ were successively applied. The AUTODYN-3D code was used to simulate the penetration performance of the segmented penetrator. The results show that the penetration performance of the segmented penetrator with steel plates was obviously higher than that of the corresponding continuous penetrator with steel plates. The outstanding penetration performance of the segmented penetrator can be observed when the impact velocity was 2.0 km/s and L/D = 1. In this case, the penetration performance of the segmented penetrator was 7% higher than that of the corresponding continuous penetrator. This trend was attributable to the interaction between the reactive plate and the projectile. The extent of the interaction relies on the relative velocities of the plate and projectiles, inclination angle, and number of segmented penetrators. It was proven that the penetration performance of the segmented penetrator can be improved by increasing the impact velocity, number of segmented penetrators between segments, and penetrator length.

본 논문의 목적은 수직 또는 경사각에 대한 분절형 관통자의 관통특성을 규명하는 것이다. 분절형 관통자의 기하형상비(L/D)는 각 1.0, 0.5, 0.25 이다. 적용된 충격속도와 경사각도는 각 1.5, 2.0, 2.5 km/s 그리고 $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ 이다. AUTODYN-3D code 가 분절형 관통자의 관통성능을 연구하기 위해 사용되었다. 결과는 강판에 대한 분절형 관통자의 관통성능이 해당 연속적 관통자보다 분명하게 높은 특성을 나타냈다. 2.0 km/s 의 충격 속도와 L/D 가 1 일 때, 분절형 관통자의 뛰어난 관통성능을 관찰 할 수 있다. 이 경우 분절형 관통자의 관통성능은 해당 연속적인 관통자보다 7 % 높았다. 이러한 경향은 표적체와 발사체 사이의 상호작용 때문이다. 상호작용의 정도는 표적체와 발사체의 상대속도와 입사각도, 분절형 관통자의 개수에 의존하고 있다. 따라서, 분절형 관통자의 관통 성능은 충격속도의 증가, 관통자의 개수 및 관통길이를 통해서 높일 수 있음이 확인되었다.

Keywords

References

  1. Bjerke, T. W., Zukas, J. A. and Kimsey, K. D., 1992, "Penetration Performance of Disk Shaped Penetrators," International Journal of Impact Engineering, Vol.12, No.2, pp.263-280. https://doi.org/10.1016/0734-743X(92)90460-B
  2. Franzen, R. R., Walker, J. D., Orphal, D. L. and Anderson, C. E., 1994, "An Upper Limit for the Penetration Performance of Segmented Rods with Segment-L/D https://doi.org/10.1016/0734-743X(94)90155-E
  3. Orphal, D. L., Anderson. C. E., Franzen, R. R. and Babcock, S. M., 1995, "Variation of Crater Geometry with Projectile L/D for L/D https://doi.org/10.1016/0734-743X(95)99883-S
  4. Normandia, M. J. and Lee, M., 1999, "Penetration Performance of Multiple Segmented-rods at 2.6 km/s," International Journal of Impact Engineering, Vol.23, No.1, pp.675-686. https://doi.org/10.1016/S0734-743X(99)00113-X
  5. Herrmarm, W. and Wilbeck, J. S., 1987, "Review of Hypervelocity Penetration Theories," International Journal of Impact Engineering, Vol.5, No.1-4, pp.307-322. https://doi.org/10.1016/0734-743X(87)90048-0
  6. De Rosset, W. S. and Sherrick, T., 1996, "Segmented Rod Performance at Ordnance Velocity," ARL-MR- 291 U.S. Army Research Laboratory, Aberdeen Proving Ground, MD.
  7. Hauver, E. and Melani, A., 1990, "Behavior of Segmented Rods During Penetration," BRL-TR-3129 Ballistic Research Laboratory, Aberdeen Proving Ground, MD.
  8. Hohler, V. and Stilp, A., 1990, "Penetration Performance of Segmented Rods at Different Spacing: Comparison with Homogeneous Rods at 2.5-3.Skin/s," Proc. 12th Int. Symp. Ballistic, San Antonio.
  9. Lee, M., 2001, "A Numerical Comparison of the Ballistic Performance of Unitary and Segmented-Rods against Stationary and Moving Oblique Plates," International Journal of Impact Engineering, Vol.26, No. 1-10, pp.399-407. https://doi.org/10.1016/S0734-743X(01)00090-2
  10. Schwartz. W., 1990, "Reactive Armor," Proc. 10th Int. Seminar on Defense Science and Technology, pp.73-77.
  11. Weihrauch, G. and Wollmann, E., 1993, "Segmented Penetrators," Propellants, Explosive, Pyrotechnics, Vol.18, No. 5, pp.270-274. https://doi.org/10.1002/prep.19930180507
  12. Jo, J. H., Lee, Y. S., Kim, J. H. and Bae, Y. W., 2012, "A Study on Hypervelocity Penetration Characteristics of Tungsten Cylindrical Penetrator," Proceedings of the KSME 2012 Fall conference of the KSME, pp.2131-2137.
  13. Zukas J. A., 1990, High Velocity Impact Dynamics. New York: Wiley.
  14. WWW1.ANSYS.COM,2011, "ANSYS/AUTODYN- 3D," 12.1 User's Manual, Material Models Chapter.
  15. Jo, J. H. and Lee, Y. S., 2012, "Numerical Simulation of Failure Mechanism of PELE Perforating Thin Target Plates," Trans. Korean Soc. Mech. Eng. A, Vol.36, No.12, pp.1577-1583. https://doi.org/10.3795/KSME-A.2012.36.12.1577
  16. Jo, J. H., Lee, Y. S. and Jin, H. L., 2012, "Numerical Simulation of Steel/Kevlar Hydrid Composite Helmet subjected to Ballistic Impact," Trans. Korean Soc. Mech. Eng. A, Vol.36, No.12, pp.1569-1575. https://doi.org/10.3795/KSME-A.2012.36.12.1569
  17. Charters, A. C., Menna, T. L. and Piekutowski, A. J., 1990, "Penetration Dynamics of Rods from Direct Ballistic Tests of Advanced Armor Components at 2-3 km/s," International Journal of Impact Engineering, Vol.10, pp.93-106. https://doi.org/10.1016/0734-743X(90)90051-V

Cited by

  1. Numerical Study on Ricochet Behavior with Inclined Impact of Polycabonate Plates vol.29, pp.4, 2014, https://doi.org/10.14346/JKOSOS.2014.29.4.001