• Title/Summary/Keyword: regulatory factor

Search Result 750, Processing Time 0.023 seconds

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen;Kai, Liao;Herong, Liao;Li, Zhang;Haixuan, Zhao;Jie, Sun
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.175-190
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

Effects of sheep slaughter age on myogenic characteristics in skeletal muscle satellite cells

  • Han, Yunfei;Guo, Wenrui;Su, Rina;Zhang, Yanni;Yang, Le;Borjigin, Gerelt;Duan, Yan
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.614-623
    • /
    • 2022
  • Objective: The objective of this study was to investigate the effects of sheep slaughter age on myogenic characteristics in skeletal muscle satellite cells (SMSCs). Methods: Primary SMSCs were isolated from hind leg biceps femoris muscles of Wurank lambs (slaughtered at three months, Mth-3) and adults (slaughtered at fifteen months, Mth-15). SMSCs were selected by morphological observation and fluorescence staining. Myogenic regulatory factors (MRF) and myosin heavy chain (MyHC) expressions of SMSCs were analyzed on days 1, 3, 4, and 5. Results: The expressions of myogenic factor 5 (Myf5), myogenic differentiation (MyoD), Myf6, and myogenin (MyoG) in Mth-15 were significantly higher in Mth-15 than in Mth-3 on days 1, 3, and 4 (p<0.05). However, MyoG expression in Mth-15 was significantly lower than in Mth-3 on day 5 (p<0.05). The expressions of MyHC I, MyHC IIa, and MyHC IIx in Mth-15 were significantly higher than in Mth-3 on days 1 and 3 (p<0.05), and MyHC IIb were significantly lower than in Mth-3 on days 3 and 4 (p<0.05). In contrast, the expression of MyHC IIx in Mth-15 was significantly lower and MyHC IIb was significantly higher than in Mth-3 on days 5 (p<0.05). Conclusion: The slaughter age altered the expression of MRFs and MyHCs in SMSCs while differentiation, which caused the variation of myogenic characteristics, and thus may affect the meat quality of Wurank sheep.

A Study on the Effects of Information Security Policy Types and Information Security Stress on Information Security Behavior (정보보안 정책 유형과 보안 스트레스가 정보보안 행동에 미치는 영향에 대한 연구)

  • Lee Kwang Ho;Jung Chan gi
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.113-120
    • /
    • 2022
  • Despite the limitations of existing security policies due to technological development, companies are unable to actively respond to changes by maintaining a closed security policy. This study classified information security policy into three types: regulatory type policy, advisory type policy, and informative type policy. For each classified policy type, the effect on the information security policy compliance behavior of organizational members was investigated by applying the extended theory of planned behavior, and the moderating effect of information security stress was investigated. SmartPLS 2.0 and SPSS 21.0, which are structural equation modeling techniques, were used to analyze the relationship affecting each factor. As a result of the study, regulatory type, advisory type, and informative type security policies affected organizational members' information security policy compliance behavior, and security stress had an effect on information security compliance attitudes and subjective norms on information security, which are prerequisites for planned behavior theory. gave. This study suggests that various types of corporate information security policies can be applied and that security stress can affect information security behaviors of members.

Lactoferrin Induces Tolerogenic Bone Marrow-Derived Dendritic Cells

  • Hui-Won Park;Sun-Hee Park;Hyeon-Ju Jo;Tae-Gyu Kim;Jeong Hyun Lee;Seung-Goo Kang;Young-Saeng Jang;Pyeung-Hyeun Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.38.1-38.12
    • /
    • 2020
  • Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that initiate both T-cell responses and tolerance. Tolerogenic DCs (tDCs) are regulatory DCs that suppress immune responses through the induction of T-cell anergy and Tregs. Because lactoferrin (LF) was demonstrated to induce functional Tregs and has a protective effect against inflammatory bowel disease, we explored the tolerogenic effects of LF on mouse bone marrow-derived DCs (BMDCs). The expression of CD80/86 and MHC class II was diminished in LF-treated BMDCs (LF-BMDCs). LF facilitated BMDCs to suppress proliferation and elevate Foxp3+ induced Treg (iTreg) differentiation in ovalbumin-specific CD4+ T-cell culture. Foxp3 expression was further increased by blockade of the B7 molecule using CTLA4-Ig but was diminished by additional CD28 stimulation using anti-CD28 Ab. On the other hand, the levels of arginase-1 and indoleamine 2,3-dioxygenase-1 (known as key T-cell suppressive molecules) were increased in LF-BMDCs. Consistently, the suppressive activity of LF-BMDCs was partially restored by inhibitors of these molecules. Collectively, these results suggest that LF effectively causes DCs to be tolerogenic by both the suppression of T-cell proliferation and enhancement of iTreg differentiation. This tolerogenic effect of LF is due to the reduction of costimulatory molecules and enhancement of suppressive molecules.

The cooperative regulatory effect of the miRNA-130 family on milk fat metabolism in dairy cows

  • Xiaofen Li;Yanni Wu;Xiaozhi Yang;Rui Gao;Qinyue Lu;Xiaoyang Lv;Zhi Chen
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1289-1302
    • /
    • 2024
  • Objective: There is a strong relationship between the content of beneficial fatty acids in milk and milk fat metabolic activity in the mammary gland. To improve milk quality, it is therefore necessary to study fatty acid metabolism in bovine mammary gland tissue. In adipose tissue, peroxisome proliferator-activated receptor gamma (PPARG), the core transcription factor, regulates the fatty acid metabolism gene network and determines fatty acid deposition. However, its regulatory effects on mammary gland fatty acid metabolism during lactation have rarely been reported. Methods: Transcriptome sequencing was performed during the prelactation period and the peak lactation period to examine mRNA expression. The significant upregulation of PPARG drew our attention and led us to conduct further research. Results: According to bioinformatics prediction, dual-luciferase reporter system detection, real-time quantitative reverse transcription polymerase chain reaction and Western blotting, miR-130a and miR-130b could directly target PPARG and inhibit its expression. Furthermore, triglyceride and oil red O staining proved that miR-130a and miR-130b inhibited milk fat metabolism in bovine mammary epithelial cells (BMECs), while PPARG promoted this metabolism. In addition, we also found that the coexpression of miR-130a and miR-130b significantly enhanced their ability to regulate milk fat metabolism. Conclusion: In conclusion, our findings indicated that miR-130a and miR-130b could target and repress PPARG and that they also have a functional superposition effect. miR-130a and miR-130b seem to synergistically regulate lipid catabolism via the control of PPARG in BMECs. In the long-term, these findings might be helpful in developing practical means to improve high-quality milk.

Inhibitory effects of honokiol on LPS and PMA-induced cellular responses of macrophages and monocytes

  • Lee, Sang-Yeol;Cho, Jae-Youl
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.574-579
    • /
    • 2009
  • The regulatory effects of honokiol on the cellular responses of macrophages and monocytes were evaluated. Specifically, we investigated the effects of honokiol with respect to lipopolysaccharide (LPS)-induced cytotoxicity, LPS- or phorbol-12-myristate-13-acetate (PMA)-mediated morphological changes, and relevant events (FITC-dextran-induced phagocytic uptake). Honokiol blocked the LPS-induced cytotoxicity of RAW264.7 cells in a dose-dependent manner. In addition, honokiol appeared to block the production of cytotoxic cytokines such as interleukin (IL)-$1{\beta}$ and tumor necrosis factor (TNF)-$\alpha$, nitric oxide (NO), and reactive oxygen species (ROS). Moreover, honokiol strongly prevented the morphological changes in RAW 264.7 and U937 cells that were induced by LPS and PMA. The surface levels of marker proteins, which are up-regulated under the morphological changes of RAW264.7 and U937 cells, were also diminished. The data presented here strongly suggest that the honokiol modulates various cellular responses managed by macrophages and monocytes.

Tandem Repeats (CCTTT)n in the Promoter of iNOS Gene in Korean Genome

  • Baek, Sun-Ah;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.167-170
    • /
    • 2009
  • Nitric oxide is an important factor to regulate the biochemical reactions in the body such as expansion of blood vessel, neural conduction and antimicrobial activity. There are two forms of nitric oxide synthase and iNOS has attracted most attention because it is involved in the development of diabetes and cardiac disease condition. There are several regulatory sequences in the promoter region of iNOS gene. One of them is (CCTTT)n. It has been reported that the number of tandem repeat of (CCTTT)n varies from population to population. So, we analyzed (CCTTT)n polymorphism in Korean genome for the purpose of comparison. According to our present study Koreans are different from other Asians reported previously because $(CCTTT)_{10}$ is the highest incidence as opposed to $(CCTTT)_{12}$ for other countries. This study should facilitate the understanding of the expression of iNOS gene in different population.

  • PDF

Regulation and Function of the Peg3 Imprinted Domain

  • He, Hongzhi;Kim, Joomyeong
    • Genomics & Informatics
    • /
    • v.12 no.3
    • /
    • pp.105-113
    • /
    • 2014
  • A subset of mammalian genes differ functionally between two alleles due to genomic imprinting, and seven such genes (Peg3, Usp29, APeg3, Zfp264, Zim1, Zim2, Zim3) are localized within the 500-kb genomic interval of the human and mouse genomes, constituting the Peg3 imprinted domain. This Peg3 domain shares several features with the other imprinted domains, including an evolutionarily conserved domain structure, along with transcriptional co-regulation through shared cis regulatory elements, as well as functional roles in controlling fetal growth rates and maternal-caring behaviors. The Peg3 domain also displays some unique features, including YY1-mediated regulation of transcription and imprinting; conversion and adaptation of several protein-coding members as ncRNA genes during evolution; and its close connection to human cancers through the potential tumor suppressor functions of Peg3 and Usp29. In this review, we summarize and discuss these features of the Peg3 domain.

Estimation of the Genetic Substitution Rate of Hanwoo and Holstein Cattle Using Whole Genome Sequencing Data

  • Lee, Young-Sup;Shin, Donghyun
    • Genomics & Informatics
    • /
    • v.16 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Despite the importance of mutation rate, some difficulties exist in estimating it. Next-generation sequencing (NGS) data yields large numbers of single-nucleotide polymorphisms, which can make it feasible to estimate substitution rates. The genetic substitution rates of Hanwoo and Holstein cattle were estimated using NGS data. Our main findings was to calculate the gene's substitution rates. Through estimation of genetic substitution rates, we found: diving region of altered substitution density exists. This region may indicate a boundary between protected and unprotected genes. The protected region is mainly associated with the gene ontology terms of regulatory genes. The genes that distinguish Hanwoo from Holstein in terms of substitution rate predominantly have gene ontology terms related to blood and circulatory system. This might imply that Hanwoo and Holstein evolved with dissimilar mutation rates and processes after domestication. The difference in meat quality between Hanwoo and Holstein could originate from differential evolution of the genes related to these blood and circulatory system ontology terms.

Primary Culture of Endothelial Cells from Murine Brain Microvessels

  • Lee Sun-Ryung
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.127-130
    • /
    • 2006
  • It is important to coordinated interaction among neurons, astrocytes and endothelial cells to maintain the function of brain. To study their regulatory mechanisms in vitro system, the co-culture system among the isolated cells from brain may be needed. However, the method for purifying brain microvascular endothelial cells (BMEC) far culture have not established yet. In this study, the proper culture methods of mice cells using two different strains, CD1 and C57BL6, to obtain the pure and plentiful endothelial cells were described. The flatted-round forms of CD1 endothelial cells grew on the collagen-IV coating plates, while the purified cells from C57 mice preferred type collagen-I dishes for their growth. Both cells displayed anti-PECAM-1 (CD31) and von Willebrand Factor immune-reactivity. These results indicated that different coating materials not only improve attachment of isolated cells but also promoting growth of cells, suggesting that this method of purifying murine Brain microvascular endothelial cells (BMEC) provides a suitable model to investigate blood-brain-barrier (BBB) properties within neurovascular unit in vitro.

  • PDF