• Title/Summary/Keyword: regular ordered semigroup

Search Result 18, Processing Time 0.026 seconds

On Ordered Ternary Semigroups

  • Daddi, Vanita Rohit;Pawar, Yashashree Shivajirao
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.375-381
    • /
    • 2012
  • We introduce the concepts of ordered quasi-ideals, ordered bi-ideals in an ordered ternary semigroup and study their properties. Also regular ordered ternary semigroup is defined and several ideal-theoretical characterizations of the regular ordered ternary semigroups are furnished.

Intuitionistic Fuzzy Bi-ideals of Ordered Semigroups

  • Jun, Young Bae
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.527-537
    • /
    • 2005
  • The intuitionistic fuzzification of the notion of a bi-ideal in ordered semigroups is considered. In terms of intuitionistic fuzzy set, conditions for an ordered semigroup to be completely regular is provided. Characterizations of intuitionistic fuzzy bi-ideals in ordered semigroups are given. Using a collection of bi-ideals with additional conditions, an intuitionistic fuzzy bi-ideal is constructed. Natural equivalence relations on the set of all intuitionistic fuzzy bi-ideals of an ordered semigroup are investigated.

  • PDF

ON SOME CLASSES OF REGULAR ORDER SEMIGROUPS

  • Gao, Zhenlin;Zhang, Guijie
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.29-40
    • /
    • 2008
  • Here, some classes of regular order semigroups are discussed. We shall consider that the problems of the existences of (multiplicative) inverse $^{\delta}po$-transversals for such classes of po-semigroups and obtain the following main results: (1) Giving the equivalent conditions of the existence of inverse $^{\delta}po$-transversals for regular order semigroups (2) showing the order orthodox semigroups with biggest inverses have necessarily a weakly multiplicative inverse $^{\delta}po$-transversal. (3) If the Green's relation $\cal{R}$ and $\cal{L}$ are strongly regular (see. sec.1), then any principally ordered regular semigroup (resp. ordered regular semigroup with biggest inverses) has necessarily a multiplicative inverse $^{\delta}po$-transversal. (4) Giving the structure theorem of principally ordered semigroups (resp. ordered regular semigroups with biggest inverses) on which $\cal{R}$ and $\cal{L}$ are strongly regular.

COINCIDENCES OF DIFFERENT TYPES OF FUZZY IDEALS IN ORDERED Γ-SEMIGROUPS

  • Kanlaya, Arunothai;Iampan, Aiyared
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.367-381
    • /
    • 2014
  • The notion of ${\Gamma}$-semigroups was introduced by Sen in 1981 and that of fuzzy sets by Zadeh in 1965. Any semigroup can be reduced to a ${\Gamma}$-semigroup but a ${\Gamma}$-semigroup does not necessarily reduce to a semigroup. In this paper, we study the coincidences of fuzzy generalized bi-ideals, fuzzy bi-ideals, fuzzy interior ideals and fuzzy ideals in regular, left regular, right regular, intra-regular, semisimple ordered ${\Gamma}$-semigroups.

(∈, ∈ ∨qk)-FUZZY IDEALS IN LEFT REGULAR ORDERED $\mathcal{LA}$-SEMIGROUPS

  • Yousafzai, Faisal;Khan, Asghar;Khan, Waqar;Aziz, Tariq
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.583-606
    • /
    • 2013
  • We generalize the idea of (${\in}$, ${\in}{\vee}q_k$)-fuzzy ordered semi-group and give the concept of (${\in}$, ${\in}{\vee}q_k$)-fuzzy ordered $\mathcal{LA}$-semigroup. We show that (${\in}$, ${\in}{\vee}q_k$)-fuzzy left (right, two-sided) ideals, (${\in}$, ${\in}{\vee}q_k$)-fuzzy (generalized) bi-ideals, (${\in}$, ${\in}{\vee}q_k$)-fuzzy interior ideals and (${\in}$, ${\in}{\vee}q_k$)-fuzzy (1, 2)-ideals need not to be coincide in an ordered $\mathcal{LA}$-semigroup but on the other hand, we prove that all these (${\in}$, ${\in}{\vee}q_k$)-fuzzy ideals coincide in a left regular class of an ordered $\mathcal{LA}$-semigroup. Further we investigate some useful conditions for an ordered $\mathcal{LA}$-semigroup to become a left regular ordered $\mathcal{LA}$-semigroup and characterize a left regular ordered $\mathcal{LA}$-semigroup in terms of (${\in}$, ${\in}{\vee}q_k$)-fuzzy one-sided ideals. Finally we connect an ideal theory with an (${\in}$, ${\in}{\vee}q_k$)-fuzzy ideal theory by using the notions of duo and (${\in}{\vee}q_k$)-fuzzy duo.

INTUITIONISTIC FUZZY INTERIOR IDEALS IN ORDERED SEMIGROUPS

  • Shabir, Muhammad;Khan, A.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1447-1457
    • /
    • 2009
  • In this paper we define intuitionistic fuzzy interior ideals in ordered semigroups. We prove that in regular(resp. intra-regular and semisimple) ordered semigroups the concepts of intuitionistic fuzzy interior ideals and intuitionistic fuzzy ideals coincide. We prove that an ordered semi group is intuitionistic fuzzy simple if and only if every intutionistic fuzzy interior ideal is a constant function. We characterize intra-regular ordered semi groups in terms of interior (resp. intuitionistic fuzzy interior) ideals.

  • PDF

ON INTRA-REGULAR ORDERED SEMIGROUPS

  • Lee, D.M.;Lee, S.K.
    • Korean Journal of Mathematics
    • /
    • v.14 no.1
    • /
    • pp.95-100
    • /
    • 2006
  • In this paper we give some new characterizations of the intra-regular ordered semigroups in terms of bi-ideals and quasi-ideals, bi-ideals and left ideals, bi-ideals and right ideals of ordered semigroups.

  • PDF

MAXIMAL PROPERTIES OF SOME SUBSEMIBANDS OF ORDER-PRESERVING FULL TRANSFORMATIONS

  • Zhao, Ping;Yang, Mei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.627-637
    • /
    • 2013
  • Let [$n$] = {1, 2, ${\ldots}$, $n$} be ordered in the standard way. The order-preserving full transformation semigroup ${\mathcal{O}}_n$ is the set of all order-preserving singular full transformations on [$n$] under composition. For this semigroup we describe maximal subsemibands, maximal regular subsemibands, locally maximal regular subsemibands, and completely obtain their classification.