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MAXIMAL PROPERTIES OF SOME SUBSEMIBANDS OF

ORDER-PRESERVING FULL TRANSFORMATIONS

Ping Zhao and Mei Yang

Abstract. Let [n] = {1, 2, . . . , n} be ordered in the standard way. The
order-preserving full transformation semigroup On is the set of all order-
preserving singular full transformations on [n] under composition. For
this semigroup we describe maximal subsemibands, maximal regular sub-
semibands, locally maximal regular subsemibands, and completely obtain
their classification.

1. Introduction

A semigroup is called idempotent-generated or semiband if it is generated by
its idempotents. The latter term was introduced by F. Pastijn [7].

Let [n] = {1, 2, . . . , n} ordered in the standard way. We denote by Singn the
semigroup (under composition) of all singular full transformations on [n]. We
say that a full transformation α in Singn is order-preserving if, for all x, y ∈ [n],
x ≤ y implies xα ≤ yα. We denote by On the subsemigroup of Singn of all
order-preserving singular full transformations.

The semigroup On was studied first by Aizenstat [1] and subsequently by
many authors (see, for example [2-6], [8-13]). In particular, Howie [5] proved
that On is a regular semiband. Garba [2] further proved that each one of the
ideals of On is also a regular semiband. Yang [12] classified completely maximal
subsemibands and maximal regular subsemibands of On. Recently, Xu, Zhao
and Li [9] obtained a complete classification of locally maximal subsemibands
of On. Further, Zhao, Xu and Yang [13] obtained a simpler form of the clas-
sification of maximal (regular) subsemibands of On, using results of Xu, Zhao
and Li [9].

In view of the above work, it is natural to seek a description of the locally
maximal regular subsemibands of On. In Section 2 we obtain a same simpler
form of the classification of maximal (regular) subsemibands of On, using a
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different approach from Zhao, Xu and Yang [13]. In Section 3 we obtain a
classification of locally maximal regular subsemibands of On.

From Gomes and Howie [3], Green’s equivalences on On are characterized
as:

αLβ ⇔ im(α) = im(β),

αRβ ⇔ ker(α) = ker(β),

αJ β ⇔ |im(α)| = |im(β)|.

Thus On has n−1 J -classes: J1, J2, . . . , Jn−1, where Jr = {α ∈ On : |im(α)| =
r}.

Gomes and Howie [3] used the notation [i → i+ 1] for the increasing idem-
potent e defined by ie = i+1, xe = x (x 6= i), and [i → i−1] for the decreasing
idempotent f defined by if = i − 1, xf = x (x 6= i). As usual, we denote by
E(S) the set of all idempotents of a subset S of On. Let E

+
n−1 = {[i → i+ 1] :

1 ≤ i ≤ n − 1} and E−

n−1 = {[i → i − 1] : 2 ≤ i ≤ n} be the increasing and

decreasing idempotent sets, respectively. Then E(Jn−1) = E+
n−1 ∪ E−

n−1.

2. Maximal (regular) subsemibands of On

Both maximal subsemibands and maximal regular subsemibands of On were
studied by [12]. Zhao, Xu and Yang [13] obtained a simpler form of the clas-
sification of maximal (regular) subsemibands of On, using results of Xu, Zhao
and Li [9]. In this section, we obtain a same simpler form of the classifica-
tion of maximal (regular) subsemibands of On, using a different approach from
Zhao, Xu and Yang [13]. For convenience, we introduce the following notation
from [8].

Let

C−

n = {α ∈ On : (∀x ∈ [n]) xα ≤ x},

C+
n = {α ∈ On : (∀x ∈ [n]) xα ≥ x},

be the semigroups of all singular order-preserving and decreasing full trans-
formations and order-preserving and increasing full transformations on [n], re-
spectively.

As in [4], for any α ∈ On, let

xα− =

{

xα, x ∈ [n]−α ;
x, otherwise,

xα+ =

{

xα, x ∈ [n]
+
α ;

x, otherwise,

where [n]
−

α = {x ∈ [n] : xα ≤ x}, and [n]
+
α = {x ∈ [n] : xα ≥ x}. It is

obvious that α− ∈ C−

n and α+ ∈ C+
n . The following lemma was proved by

Higgins [4, page 1053].
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Lemma 2.1. Let α ∈ On. Then

α = α+α− = α−α+,

with α− ∈ C−

n , α+ ∈ C+
n .

For convenience, we use [n → n + 1] or [1 → 0] to denote ∅ (the empty
mapping). With this notation, we have:

Lemma 2.2. Let α ∈ C+
n . If kα = k for some 1 ≤ k ≤ n, then

α ∈ 〈E+
n−1\{[k → k + 1]}〉.

Proof. Since α ∈ C+
n ⊆ On, we have that the ker(α)-classes are convex subsets

C of [n], in the sense that

x, y ∈ C and x ≤ z ≤ y =⇒ z ∈ C.

Then α can be expressed as

α =

(

A1 A2 · · · Ar

b1 b2 · · · br

)

,

where Ai = {ai, ai + 1, . . . , ai+1 − 1} (1 ≤ i ≤ r − 1), Ar = {ar, ar + 1, . . . , n},
1 = a1 < a2 < · · · < ar and b1 < b2 < · · · < br. Since α ∈ C+

n , we have

ai = minAi ≤ maxAi ≤ (maxAi)α = bi, 1 ≤ i ≤ r − 1,

ar = minAr ≤ maxAr(= n) ≤ (maxAr)α = br.

Thus
br = n and ai ≤ bi, i ∈ [n].

Let e0 be the identity mapping on [n], and let

E+(i, j) = [i → i+ 1] · [i+ 1 → i+ 2] · · · [j − 1 → j], 1 ≤ i < j ≤ n,

E+(i, i) = e0, i ∈ [n].

Further, let
β = E+(ar, br)E

+(ar−1, br−1) · · ·E
+(a1, b1).

We claim that α = β. To prove that α = β, take any x ∈ [n]. Suppose that
x ∈ As (1 ≤ s ≤ r). Then

xβ = xE+(ar, br)E
+(ar−1, br−1) · · ·E

+(a1, b1) = bs = xα.

Note that [n → n + 1] = ∅ (the empty mapping). If k = n, then α = β ∈
〈E+

n−1 ∪ {e0}〉 = 〈E+
n−1\{[n → n + 1]}〉 ∪ {e0}. Since α ∈ C+

n ⊆ On ⊆ Singn,

we have α ∈ 〈E+
n−1\{[n → n+ 1]}〉. If 1 ≤ k ≤ n− 1. Note that br = n. Since

kα = k, there exists 1 ≤ j ≤ r − 1 such that k ∈ Aj and bj = k. Since α ∈ C+
n ,

we have bj = maxAj = k and so aj+1 = minAj+1 = k + 1. Thus

(2.1) [k → k+1] /∈ {[ai → ai+1], [ai+1 → ai+2], . . . , [bi−1 → bi]}, ai < bi.

Note that E+(ai, bi) = [ai → ai + 1][ai + 1 → ai + 2] · · · [bi − 1 → bi] if ai < bi;
E+(ai, bi) = e0 if ai = bi. It follows immediately from (2.1) that

E+(ai, bi) ∈ 〈E+
n−1\{[k → k + 1]} ∪ {e0}〉, 1 ≤ i ≤ r.
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Then α = β ∈ 〈E+
n−1\{[k → k + 1]} ∪ {e0}〉. It is obvious that 〈E+

n−1\{[k →

k + 1]} ∪ {e0}〉 = 〈E+
n−1\{[k → k + 1]}〉 ∪ {e0}. Since α ∈ C+

n ⊆ On ⊆ Singn,
we have

α ∈ 〈E+
n−1\{[k → k + 1]}〉. �

Similarly, we can prove:

Lemma 2.3. Let α ∈ C−

n . If kα = k for some 1 ≤ k ≤ n. Then

α ∈ 〈E−

n−1\{[k → k − 1]}〉.

The following lemma is immediate by definition of α+, α−:

Lemma 2.4. For any α ∈ On, we have

(i) If kα ≤ k for some 1 ≤ k ≤ n, then kα+ = k.
(ii) If kα ≥ k for some 1 ≤ k ≤ n, then kα− = k.

For any s, t ∈ [n], let

(2.2) Mst = {α ∈ On : sα ≤ s, tα ≥ t}.

With above notation, we have:

Lemma 2.5. Let n ≥ 3. Then

Mst = 〈E(Jn−1)\{[s → s+ 1], [t → t− 1]}〉, s, t ∈ [n].

Proof. Let Pst = 〈E(Jn−1)\{[s → s+ 1], [t → t− 1]}〉. It is easy to prove that
Mst is a subsemigroup of On. It is obvious that E(Jn−1)\{[s → s + 1], [t →
t− 1]} ⊆ Mst. Then Pst = 〈E(Jn−1)\{[s → s+ 1], [t → t− 1]}〉 ⊆ Mst.

It remains to prove that Mst ⊆ Pst. Let α ∈ Mst ⊆ On. By Lemmas 2.1
and 2.4, we have

α = α+α− = α−α+, α− ∈ C−

n , α+ ∈ C+
n ,

and sα+ = s, tα− = t. Note that E(Jn−1) = E+
n−1 ∪ E−

n−1. Thus, by Lemmas
2.2 and 2.3,

α = α+α− ∈ 〈E+
n−1\{[s → s+ 1]}〉 · 〈E−

n−1\{[t → t− 1]}〉

⊆ 〈E(Jn−1)\{[s → s+ 1], [t → t− 1]}〉 = Pst. �

A subsemiband S of On is called maximal subsemiband if for an arbitrary
subsemiband T of On such that S ⊂ T , then T = On. Combining [12, Theorem
2.1 and Lemma 2.3], we obtain the following.

Lemma 2.6. Let n ≥ 3. Let In−2 = {α ∈ On : |im(α)| ≤ n− 2}. Then each

maximal subsemiband of On must be one of the following forms:
(C) Cs = In−2 ∪ 〈E(Jn−1)\{[s → s+ 1]〉, s = 1, 2, . . . , n− 1.
(D) Ds = In−2 ∪ 〈E(Jn−1)\{[s → s− 1]〉, s = 2, 3, . . . , n.

Now, it is easy to prove one of the main results of this section:
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Theorem 2.7. Let n ≥ 3. Let In−2 = {α ∈ On : |im(α)| ≤ n− 2}. Then each

maximal subsemiband of On must be one of the following forms:
(A) As = In−2 ∪ {α ∈ On : sα ≤ s}, s = 1, 2, . . . , n− 1.
(B) Bs = In−2 ∪ {α ∈ On : sα ≥ s}, s = 2, 3, . . . , n.

Proof. Let Mst be as defined in (2.2). Then Ms1 = {α ∈ On : sα ≤ s} and
Mns = {α ∈ On : sα ≥ s}. Note that [1 → 0] = [n → n + 1] = ∅ (the empty
mapping). Thus, by Lemma 2.5,

As = In−2 ∪ {α ∈ On : sα ≤ s} = In−2 ∪Ms1

= In−2 ∪ 〈E(Jn−1)\{[s → s+ 1]〉 = Cs,

Bs = In−2 ∪ {α ∈ On : sα ≥ s} = In−2 ∪Mns

= In−2 ∪ 〈E(Jn−1)\{[s → s− 1]〉 = Ds.

Hence Theorem 2.7 holds by Lemma 2.6. �

A regular subsemiband S of On is called maximal regular subsemiband if for
an arbitrary regular subsemiband T ofOn such that S ⊂ T , then T = On. Note
that [1 → 0] = [n → n+ 1] = ∅ (the empty mapping). Combining [12, Lemma
2.3 and Theorem 4.1], we obtain the following.

Lemma 2.8. Let n ≥ 4. Let In−2 = {α ∈ On : |im(α)| ≤ n− 2}. Then each

maximal regular subsemiband of On must be the following forms:
(F) Fs = In−2 ∪ 〈E(Jn−1)\{[s → s+ 1], [s → s− 1]}〉, s = 1, 2, . . . , n.
(G) Gs = In−2 ∪ 〈E(Jn−1)\{[s → s+ 1], [s+ 1 → s]}〉, s = 2, 3, . . . , n− 2.

Using Lemma 2.5 and Lemma 2.8, the other main result of this section is
now established:

Theorem 2.9. Let n ≥ 4. Let In−2 = {α ∈ On : |im(α)| ≤ n− 2}. Then each

maximal regular subsemiband of On must be the following forms:
(A) As = In−2 ∪ {α ∈ On : sα = s}, s = 1, 2, . . . , n.
(B) Bs = In−2 ∪ {α ∈ On : sα ≤ s, (s+ 1)α ≥ s+ 1}, s = 2, 3, . . . , n− 2.

Proof. Let Mst be as defined in (2.2). Then Mss = {α ∈ On : sα = s} and
Ms(s+1) = {α ∈ On : sα ≤ s, (s + 1)α ≥ s + 1}. Note that [1 → 0] = [n →
n+ 1] = ∅ (the empty mapping). Thus, by Lemma 2.5,

As = In−2 ∪ {α ∈ On : sα = s} = In−2 ∪Mss

= In−2 ∪ 〈E(Jn−1)\{[s → s+ 1], [s → s− 1]}〉 = Fs,

Bs = In−2 ∪ {α ∈ On : sα ≤ s, (s+ 1)α ≥ s+ 1} = In−2 ∪Ms(s+1)

= In−2 ∪ 〈E(Jn−1)\{[s → s+ 1], [s+ 1 → s]}〉 = Gs.

Hence Theorem 2.9 holds by Lemma 2.8. �
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3. Locally maximal regular subsemibands of On

Let I be a subset of E(Jn−1). A subsemiband 〈I〉 of On is called a locally

maximal regular subsemiband if 〈I〉 is regular, and any regular subsemiband
〈J〉 (J ⊆ E(Jn−1)) of On properly containing 〈I〉 must be On. In this section,
we obtain a classification of locally maximal regular subsemibands of On.

The main result of this section is:

Theorem 3.1. Let n ≥ 4. Let In−2 = {α ∈ On : |im(α)| ≤ n− 2}. Then each

locally maximal regular subsemiband of On must be the following forms:
(A) As = {α ∈ On : sα = s}, s = 1, 2, . . . , n.
(B) Bs = {α ∈ On : sα ≤ s, (s+ 1)α ≥ s+ 1}, s = 2, 3, . . . , n− 2.

To prove Theorem 3.1, we begin by establishing a series of lemmas. Com-
bining [5, Lemmas 1.2 and 1.3], we know that On is generated by E(Jn−1).
Note that |E(Jn−1)| = 2n− 2. From the result [3, Theorem 2.8] that the rank
of On is 2n− 2, we immediately deduce:

Lemma 3.2. Let n ≥ 4. Then

On = 〈E(Jn−1)〉 and no proper subset of E(Jn−1) can generate On.

It is well known that the characterized forms of the Green’s relations in
Singn are the same as in On (see Section 1). Singn has n − 1 J -classes:
SJr = {α ∈ Singn : |im(α)| = r}, r = 1, 2, . . . , n− 1. Let

SIr = {α ∈ Singn : |im(α)| ≤ r}, r = 1, 2, . . . , n− 1.

Then the sets SIr are two-sided ideal of Singn. As usual, we denote by E(S)
the set of all idempotents of a subset S of Singn. Let I be nonempty subsets of
E(SJn−1). It is obvious that I ⊆ E(〈I〉∩SJn−1). In general, E(〈I〉∩SJn−1) ⊆
I is false. For example, let

f =

(

2 3 · · · n− 1 {n, 1}
2 3 · · · n− 1 1

)

, g =

(

2 3 · · · n− 1 {n, 1}
2 3 · · · n− 1 n

)

,

then f, g ∈ E(SJn−1). Let η = f · [n− 1 → n] · [n− 2 → n− 1] · · · [1 → 2], then

η =

(

2 3 · · · n− 1 {n, 1}
3 4 · · · n 2

)

and so ηn−1 = g. Clearly, E+
n−1 ⊆ E(SJn−1). Let I = E+

n−1 ∪ {f}. Then g =

ηn−1 ∈ 〈I〉 and so g ∈ E(〈I〉∩SJn−1). Clearly, g /∈ I. Thus E(〈I〉∩SJn−1) * I.
However, using Lemma 3.2, we have the following.

Lemma 3.3. Let I be a subset of E(Jn−1). Then

E(〈I〉 ∩ Jn−1) = I.

Proof. Clearly, I ⊆ E(〈I〉∩Jn−1). Now, we need to prove that E(〈I〉∩Jn−1) ⊆
I. Note that I ⊆ E(〈I〉∩Jn−1) ⊆ 〈I〉. Then 〈I〉 ⊆ 〈E(〈I〉∩Jn−1)〉 ⊆ 〈〈I〉〉 = 〈I〉
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and so 〈E(〈I〉∩Jn−1)〉 = 〈I〉. Let I∗ = E(〈I〉∩Jn−1)\I. Then I ⊆ E(Jn−1)\I∗

and so 〈I∗〉 ⊆ 〈E(〈I〉 ∩ Jn−1)〉 = 〈I〉 ⊆ 〈E(Jn−1)\I∗〉. Thus

E(Jn−1) = I∗ ∪ (E(Jn−1)\I
∗) ⊆ 〈I∗〉 ∪ 〈E(Jn−1)\I

∗〉 = 〈E(Jn−1)\I
∗〉

and so 〈E(Jn−1)〉 ⊆ 〈E(Jn−1)\I∗〉 ⊆ On. It follows immediately form Lemma
3.2 that

E(Jn−1)\I
∗ = E(Jn−1).

Then I∗ = ∅ (the empty set) and so E(〈I〉 ∩ Jn−1) ⊆ I. �

Further, we have:

Lemma 3.4. Let In−2 = {α ∈ On : |im(α)| ≤ n−2}. Let I and J be nonempty

subsets of E(Jn−1). Then

(i) I ⊆ J ⇔ 〈I〉 ⊆ 〈J〉 ⇔ In−2 ∪ 〈I〉 ⊆ In−2 ∪ 〈J〉.
(ii) I ⊂ J ⇔ 〈I〉 ⊂ 〈J〉 ⇔ In−2 ∪ 〈I〉 ⊂ In−2 ∪ 〈J〉.

Proof. (i) Clearly,

I ⊆ J ⇒ 〈I〉 ⊆ 〈J〉 ⇒ In−2 ∪ 〈I〉 ⊆ In−2 ∪ 〈J〉.

To prove that

I ⊆ J ⇐ 〈I〉 ⊆ 〈J〉 ⇐ In−2 ∪ 〈I〉 ⊆ In−2 ∪ 〈J〉.

It suffices to prove that

In−2 ∪ 〈I〉 ⊆ In−2 ∪ 〈J〉 ⇒ I ⊆ J.

Suppose that In−2∪〈I〉 ⊆ In−2 ∪〈J〉. Then 〈I〉∩Jn−1 = (In−2∪〈I〉)∩Jn−1 ⊆
(In−2 ∪ 〈J〉) ∩ Jn−1 = 〈J〉 ∩ Jn−1. Thus, by Lemma 3.3,

I = E(〈I〉 ∩ Jn−1) ⊆ E(〈J〉 ∩ Jn−1) = J.

(ii) By (i), we easily deduce that

I = J ⇔ 〈I〉 = 〈J〉 ⇔ In−2 ∪ 〈I〉 = In−2 ∪ 〈J〉.

It follows immediately that

I ⊂ J ⇔ 〈I〉 ⊂ 〈J〉 ⇔ In−2 ∪ 〈I〉 ⊂ In−2 ∪ 〈J〉. �

Now, we can use Lemmas 2.5, 2.8, 3.2 and 3.4 to obtain the following.

Lemma 3.5. For n ≥ 4 and s ∈ [n], let Mss be as defined in (2.2). Then Mss

is a locally maximal regular subsemiband of On.

Proof. Recall that Mss = {α ∈ On : sα = s}. Let α ∈ Mss. If |im(α)| = 1,
then clearly α = αα and so α is regular. If |im(α)| ≥ 2, suppose that

α =

(

A1 A2 · · · Ar

a1 a2 · · · ar

)

∈ Mss,
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where a1 < a2 < · · · < ar, minAi > maxAi−1, i = 2, 3, . . . , r. Since α ∈ Mss,
there exists k ∈ {1, 2, . . . , r} such that s ∈ Ak and ak = s. Let

β =

(

B1 B2 · · · Br

b1 b2 · · · br

)

,

where bk = s ∈ Ak, bi = minAi, i 6= k, B1 = {1, 2, . . . , a1}, Bs = {x ∈ [n] :
as−1 < x ≤ as}, s = 2, 3, . . . , r− 1, and Br = {ar−1 + 1, . . . , n}, then α = αβα
and β ∈ Mss (since s = ak ∈ Bk and bk = s). Then α is regular and by Lemma
2.5, we have

(3.1) Mss = 〈E(Jn−1)\{[s → s+ 1], [s → s− 1]}〉.

Thus Mss is a regular subsemiband.
For some J ⊆ E(Jn−1), let 〈J〉 be a regular subsemiband of On properly

containing Mss, see (3.1). Then, by Lemma 3.4(ii),

(3.2) E(Jn−1)\{[s → s+ 1], [s → s− 1]} ⊂ J.

Let T = In−2 ∪ 〈J〉 and let Fs be as defined in Lemma 2.8, i.e., Fs = In−2 ∪
〈E(Jn−1)\{[s → s + 1], [s → s − 1]}〉, see (3.2). Then, by Lemma 3.4(ii),
Fs ⊂ T , and since 〈J〉 is regular, In−2 is a regular semiband (see [2]) and also
an ideal of On, we deduce that T is a regular subsemiband of On. Thus, by
maximality of Fs (by Lemma 2.8) and Fs ⊂ T , T = In−2 ∪ 〈J〉 = On. It now
follows immediately that E(Jn−1) ⊆ 〈J〉 and so 〈E(Jn−1)〉 ⊆ 〈J〉. Thus, by
Lemma 3.2, 〈J〉 = On. �

Also, using Lemmas 2.5, 2.8, 3.2 and 3.4, we have:

Lemma 3.6. For n ≥ 4 and 2 ≤ s ≤ n− 2, let Ms(s+1) be as defined in (2.2).
Then Ms(s+1) is a locally maximal regular subsemiband of On.

Proof. Recall that Ms(s+1) = {α ∈ On : sα ≤ s, (s + 1)α ≥ s + 1}. Note that
for any α ∈ Ms(s+1), |im(α)| ≥ 2 (since sα ≤ s and (s+1)α ≥ s+1). Consider
a typical element

α =

(

A1 A2 · · · Ar

a1 a2 · · · ar

)

∈ Ms(s+1),

where a1 < a2 < · · · < ar, minAi > maxAi−1, i = 2, . . . , r. Since α ∈ Ms(s+1),
there exist k ∈ {1, 2, . . . , r − 1} such that s ∈ Ak, s+ 1 ∈ Ak+1 and ak ≤ s <
s+ 1 ≤ ak+1. Let ci = ai (i 6= k) and ck = s, then c1 < c2 < · · · < cr. Let

β =

(

B1 B2 · · · Br

b1 b2 · · · br

)

,

where bk+1 = s + 1 ∈ Ak+1, bi = minAi, i 6= k + 1, B1 = {1, 2, . . . , c1},
Bi = {x ∈ [n] : ci−1 < x ≤ ci}, i = 2, 3, . . . , r − 1 and Br = {cr−1 + 1, . . . , n}.
Clearly, β ∈ On. Note that s = ck ∈ Bk and s + 1 ∈ Bk+1 (since ck = s <
s + 1 ≤ ak+1 = ck+1). It follows that sβ = Bkβ = bk = minAk ≤ s (since
s ∈ Ak) and (s + 1)β = Bk+1β = bk+1 = s + 1. Thus β ∈ Ms(s+1). Note
that ci = ai (i 6= k) and ak ≤ s = ck < s + 1 ≤ ak+1. It follows that ai ∈ Bi
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(i = 1, 2, . . . , r) and so α = αβα. Thus α is regular and by Lemma 2.5, we
have

(3.3) Ms(s+1) = 〈E(Jn−1)\{[s → s+ 1], [s+ 1 → s]}〉.

Thus Ms(s+1) is a regular subsemiband.
For some J ⊆ E(Jn−1), let 〈J〉 be a regular subsemiband of On properly

containing Ms(s+1), see (3.3). Then, by Lemma 3.4(ii),

(3.4) E(Jn−1)\{[s → s+ 1], [s+ 1 → s]} ⊂ J.

Let T = In−2 ∪ 〈J〉 and let Gs be as defined in Lemma 2.8, i.e., Gs = In−2 ∪
〈E(Jn−1)\{[s → s+ 1], [s+ 1 → s]}〉. Then, by Lemma 3.4(ii), Gs ⊂ T . Since
〈J〉 is regular, In−2 is a regular semiband (see [2]) and also an ideal of On, we
deduce that T is a regular subsemiband of On. Thus, by maximality of Gs (by
Lemma 2.8) and Gs ⊂ T , T = In−2 ∪ 〈J〉 = On. It follows immediately that
E(Jn−1) ⊆ 〈J〉 and so 〈E(Jn−1)〉 ⊆ 〈J〉. Thus, by Lemma 3.2, 〈J〉 = On. �

The following lemma gives a necessary condition for a locally regular sub-
semiband of On to be maximal.

Lemma 3.7. Let I be a nonempty set of E(Jn−1). If 〈I〉 is a locally max-

imal regular subsemiband of On, then T = In−2 ∪ 〈I〉 is a maximal regular

subsemiband of On.

Proof. Suppose that 〈I〉 is a locally maximal regular subsemiband of On. Let
M be a regular subsemiband of On properly containing T . Since M = 〈E(M)〉
and In−2 ⊆ M (since T ⊂ M), we have M = In−2∪M = In−2∪〈E(M ∩Jn−1)〉
and so

In−2 ∪ 〈I〉 = T ⊂ M = In−2 ∪ 〈E(M ∩ Jn−1)〉.

Note that E(M ∩ Jn−1) ⊆ E(Jn−1). Then, by Lemma 3.4(ii), 〈I〉 ⊂ 〈E(M ∩
Jn−1)〉 and so, by the locally maximality of 〈I〉, 〈E(M ∩ Jn−1)〉 = On. Thus
M = On and so T = In−2 ∪ 〈I〉 is a maximal regular subsemiband of On. �

Now, we can prove Theorem 3.1.

Proof Theorem 3.1. Let Mss and Ms(s+1) be defined earlier. It is obvious that

(3.4) As = {α ∈ On : sα = s} = Mss,

(3.5) Bs = {α ∈ On : sα ≤ s, (s+ 1)α ≥ s+ 1} = Ms(s+1).

Thus, by Lemmas 3.5 and 3.6, As and Bs are locally maximal regular sub-
semibands of On.

Conversely, we shall prove that each locally maximal regular subsemiband
of On must be of the form As or Bs. For some I ⊆ E(Jn−1), let 〈I〉 is a locally
maximal regular subsemiband of On. Then, by Lemma 3.7, T = In−2∪〈I〉 is a
maximal regular subsemiband of On. Thus, by Lemma 2.8, there exists s ∈ [n]
such that T = Fs = In−2 ∪ 〈E(Jn−1)\{[s → s+1], [s → s− 1]}〉 or there exists
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s ∈ {2, 3, . . . , n−2} such that T = Gs = In−2∪〈E(Jn−1)\{[s → s+1], [s+1 →
s]}〉. It follows immediately from Lemmas 3.4 that

〈I〉 = 〈E(Jn−1〉\{[s → s+ 1], [s → s− 1]}〉 or

〈I〉 = 〈E(Jn−1)\{[s → s+ 1], [s+ 1 → s]}〉.

Thus, by Lemma 2.5 and (3.4), (3.5),

〈I〉 = 〈E(Jn−1〉\{[s → s+ 1], [s → s− 1]}〉 = Mss = As or

〈I〉 = 〈E(Jn−1)\{[s → s+ 1], [s+ 1 → s]}〉 = Ms(s+1) = Bs.
�
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