• Title/Summary/Keyword: regional water supply system

Search Result 91, Processing Time 0.023 seconds

Hydraulic Adequacy of Connection Pipes in Water Supply Systems for Contingencies (비상시 용수공급을 위한 상수도 연계관로의 수리적 적정성 평가)

  • Han, Wanseob;Jung, Kwansoo;Kim, Juhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.679-687
    • /
    • 2013
  • Although stable and safe drinking water supply to the customers is a basic function of multi-regional water supply systems in Korea, most systems have their vulnerabilities in emergency time due to the branch-type. Application of connections from the other water supply system can provide a solutions for these tentative problems. This paper describes reduction planning of water supply accidents that can minimize a service interruption to customers in multi-regional water supply system by connecting pipe lines between local water supply systems in Mokpo city areas. The result of this study shows that Juam dam multi-regional water supply systems can cover all of the water shortage in southern parts of Jeonnam multi-regional water supply systems by transmitting water through connected pipes between local networks. This can be effective to supply water interactively in various contingencies, when a pipe line accident occurs in southern area of Jeonnam multi-regional water supply systems. On the contrary, southern area of Jeonnam multi-regional water supply systems can cover 99.5 %($62,500m^3/day$) of the water shortage of Juam dam multi-regional water supply systems when service interruptions caused by various pipe accidents occur in the system.

Evaluation for conjunctive operation of multi-regional water supply system through risk analysis (위기대응 취약성 분석을 통한 광역상수도 연계운영 평가)

  • Hwang, Jinsoo;Choi, Taeho;Hong, Gonghyun;Lee, Doojin;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.269-279
    • /
    • 2019
  • This study would present a risk analysis method to evaluate stable tap water supply in a multi-regional water supply system and propose a measure for the evaluation of the effect of the conjunctive operation of the multi-regional water supply system using this. Judging from the vulnerability for the crisis response of the entire N. multi-regional water supply system, as compared to the result of Scenario 1 in which no conjunctive pipes were operated, it was found that in Scenario 2, in which conjunctive pipes were partially operated, the vulnerability of crisis response decreased by about 30.6%, and as compared to Scenario 3, the vulnerability of crisis response decreased by 86.2%. In setting a plan for stable tap water supply in N multi-regional water supply system, using the estimated value and the method for the evaluation of the vulnerability of crisis response by pipe, by interval and by line, it is judged that this can be utilized as a basis for the judgment of the evaluation of the operation or the additional installation of conjunctive pipes.

A Study on the Total Head Decision of Pump for Regional Water Supply Facilities (광역상수도용 펌프의 전양정 결정에 관한 연구)

  • Kim, Kyung-Yup;Suh, Sang-Ho;Lee, Jung-Woo;Roh, Hyung-Woon;Kim, Sang-Gyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.165-170
    • /
    • 2001
  • An extensive range of pumping facilities are employed in the regional water supply system in metropolitan areas, and optimization and the systematic combination of the Pump facilities have direct bearing on the stability and economy of the water supply system concerned. These systems must be able to guarantee stability, efficiency and offer high reliability. Preparation of metropolitan area regional water supply system construction project must include a basic plan which takes into account the suitability of pumping facilities to be used, the environment in which facilities will be installed, man-power requirements and basic operational and management policies. This paper contains over-all analysis of the management of metropolitan area regional water supply systems as like Jayang, Paldang 1st pump station. In the study, it aims to prepare counterplan which will be operated and managed the pump upon the operational conditions and to suggest the proposal for water facilities codes to decides total head of pump in Korea.

  • PDF

Estimation of Regional Agricultural Water Demand over the Jeju Island (제주도 권역별 농업용수 수요량 산정에 대한 고찰)

  • Choi, Kwang-Jun;Song, Sung-Ho;Kim, Jin-Sung;Lim, Chan-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.639-649
    • /
    • 2013
  • Over 96.2% of the agricultural water in Jeju Island is obtained from groundwater and there are quite distinct characteristics of agricultural water demand/supply spatially because of regional and seasonal differences in cropping system and rainfall amount. Land use for cultivating crops is expected to decrease 7.4% (4,215 ha) in 2020 compared to 2010, while market garden including various vegetable crop types having high water demand is increasing over the Island, especially western area having lower rainfall amount compared to southern area. On the other hand, land use for fruit including citrus and mandarin having low water demand is widely distributed over southern and northern part having higher rainfall amount. The agricultural water demand of $1,214{\times}10^3\;m^3/day$ in 2020 is estimated about 1.39 times compared to groundwater supply capacity of $874{\times}10^3\;m^3/day$ in 2010 with 42.4% of eastern, 103.1% of western, 61.9% of southern, and 77.0% of northern region. Moreover, net secured amount of agricultural groundwater would be expected to be much smaller due to regional disparity of water demand/supply, the lack of linkage system between the agricultural water supply facilities, and high percentage of private wells. Therefore, it is necessary to ensure the total net secured amount of agricultural groundwater to overcome the expected regional discrepancy of water demand and supply by establishing policy alternative of regional water supply plan over the Island, including linkage system between wells, water tank enlargement, private wells maintenance and public wells development, and continuous enlargement of rainwater utilization facilities.

Drought risk assessment considering regional socio-economic factors and water supply system (지역의 사회·경제적 인자와 용수공급체계를 고려한 가뭄 위험도 평가)

  • Kim, Ji Eun;Kim, Min Ji;Choi, Sijung;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.589-601
    • /
    • 2022
  • Although drought is a natural phenomenon, its damage occurs in combination with regional physical and social factors. Especially, related to the supply and demand of various waters, drought causes great socio-economic damage. Even meteorological droughts occur with similar severity, its impact varies depending on the regional characteristics and water supply system. Therefore, this study assessed regional drought risk considering regional socio-economic factors and water supply system. Drought hazard was assessed by grading the joint drought management index (JDMI) which represents water shortage. Drought vulnerability was assessed by weighted averaging 10 socio-economic factors using Entropy, Principal Component Analysis (PCA), and Gaussian Mixture Model (GMM). Drought response capacity that represents regional water supply factors was assessed by employing Bayesian networks. Drought risk was determined by multiplying a cubic root of the hazard, vulnerability, and response capacity. For the drought hazard meaning the possibility of failure to supply water, Goesan-gun was the highest at 0.81. For the drought vulnerability, Daejeon was most vulnerable at 0.61. Considering the regional water supply system, Sejong had the lowest drought response capacity. Finally, the drought risk was the highest in Cheongju-si. This study identified the regional drought risk and vulnerable causes of drought, which is useful in preparing drought mitigation policy considering the regional characteristics in the future.

A Study on the Effective Operation of Bonpo Photovoltaic Power System (본포취수장 태양광발전설비의 효과적 운영방법에 관한 연구)

  • Cho, Nam-Bin;Lee, Jae-Oh;Choi, Jang-Geon;Lee, Jae-Hoon;Choi, Yeon-Han
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1124-1125
    • /
    • 2008
  • 본 연구는 한국수자원공사에서 국제기후변화협약 등 정부의 신재생에너지 개발계획에 적극 동참하고, 우리공사에서 운영관리하고 있는 수자원시설물의 잠재에너지를 발굴하기 위하여 경남지역본부 본포취수장에 설치하여 운영관리중인 시설용량 99kWp의 태양광발전설비에 대한 주요 설비와 운영관리를 하는데 불편한 사항에 대한 개선내용을 소개함으로써 향후 우리시스템과 유사한 조건(무인사업장)에 시설하여 운영할 설비를 효과적으로 관리하기 위한 내용을 소개하고 있다.

  • PDF

Design of Multi-Regional Water Supply System Based on the Optimization Technique (최적화 기법을 이용한 광역상수도 관로시스템 설계)

  • Kim, Ju Hwan;Kim, Zong Woo;Park, Jae Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.95-112
    • /
    • 1999
  • In this research, it is proposed that optimization method is introduced and applied to the design of pipeline system in multi-regional water supply project, which has been constructed to settle the regional unbalance problems of available water resources. For the purpose, interface programs are developed to integrate linear programming model and KYPIPE model which is used for optimization and hydraulic analysis, respectively. The developed program is applied to the pipeline system design of multi-regional water supply project. The optimal diameters from the application of linear programming technique are compared with those from conventional method that is time-consuming and tedious trail and error process. Since the conventional design largely depends upon the experience of designers and the results of general hydraulic analysis, it can not be reasonable and consistent. The application of linear programming technique can make it possible to design pipeline system optimally by using same design factors of general hydraulic models. The model can select commercial discrete pipe diameter as optimal size by using pipe length as decision variables. The developed model is applied to Pohang multi-regional water supply system design with two different objective functions, which are initial construction cost and annual cost including electric cost. As results, it is calculated that the initial construction cost of 1,449,740 thousand won is saved and annual cost of 128,951 thousand won is saved for a year within study year. Also, the optimal site of pump station is selected on 5th pipe, which is located between the diverging junction to Kangdong(2) province and the diverging junction to Cheonbuk province. It is explained that pump cost is less than pipe cost in this application case study due to little pump station scale. In the case of water supply with large pump capacity, it is reasonal that the increase of pipe size is more efficient instead the increase of pump station capacity to save annual cost.

  • PDF

A Study on the Pump System Design Optimization for Regional Water Supply Facilities (광역상수도용 펌프의 규격 최적결정방법에 관한 연구)

  • Roh, Hyung-woon;Suh, Sang-Ho;Kim, Kyung-Yup;Kim, Sung-Won;Kim, Il-Soo;Park, Jong-Moon;Park, HeeKyung;Park, No-Suk;Lee, Bong-Joo;Lee, Jeung-Woo;Lee, Young-Bum;Lee, Young-Ho;Kim, Sang-Gyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.159-164
    • /
    • 2001
  • An extensive range of pumping facilities are employed in the regional water supply system in metropolitan areas, and optimization and the systematic combination of the pump facilities have direct bearing on the stability and economy of the water supply system concerned. These systems must be able to guarantee stability, efficiency and offer high reliability. Preparation of metropolitan area regional water supply system construction project must include a basic plan which takes into account the suitability of pumping facilities to be used, the environment in which facilities will be installed, man-power requirements and basic operational and management policies. This paper contains over-all analysis of the management of metropolitan area regional water supply systems and highlights the cause of Inefficiency and energy waste and puts forward a remedial plan of action. In addition, pump/motor specification programs were developed using Visual Basic to assist selection of the same.

  • PDF

A Study on the Improvement of Price Structure of Multi-regional Water Supply System in Korea (국내 광역상수도 요금제도의 개선 방향에 관한 연구)

  • Kim, Yeon-Bae;Heo, Eun-Nyeong;Kim, Tae-Yu;Kim, Wan-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.537-545
    • /
    • 1999
  • This study examines three counterplans for the improvement in price structure of Korean multi-regional water supply system. First, price differentiation between industrial and residential water uses is analyzed using several pricing methods. It has been estimated that the industrial water price by the Ramsey pricing method is needed to be two to two and half times higher than the price of residential water to achieve maximum social welfare. Second, peak-load pricing is then studied to seek for the effectiveness of seasonal differentiation in water price. It has been found that consideration of dam facilities and their functions is the key factor for the effectiveness of the seasonal differentiation in water price. Finally, the discussion about the introduction of contract pricing system to the multi regional water supply system to achieve optimal investment plan for the future water demand is presented. We has found that the introduction of contract pricing system will greatly increase the efficiency in future investment plan of the multi-regional water supply system.

  • PDF

A Numerical Method to Calculate Drainage Time in Large Transmission Pipelines Filter (대구경 관로의 배수시간 산정을 위한 수치해석 기법)

  • Shin, Byoung-Ho;Choi, Doo-Yong;Jeong, Kwansue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.511-519
    • /
    • 2017
  • Multi-regional water supply system, which installed for supplying multiple water demands, is characterized by large-sized, long-distance, tree-type layout. This system is vulnerable to long-standing service interruption when a pipe breaks is occurred. In this study, a numerical method is proposed to calculate drainage time that directly affects time of service interruption. To begin with, governing equations are formulated to embed the delayed drainage effect by the friction loss, and to resolve complicated connection of pipelines, which are derived from the continuity and energy equations. The nonlinear hydraulic equations are solved by using explicit time integration method and the Newton-Raphson method. The developed model is verified by comparing the result with analytical solution. Furthermore, the model's applicability is validated by the examples of pipelines in serial, in parallel, and complex layout. Finally, the model is utilized to suggest an appropriate actions to reduce the deviation of draining time in the C transmission line of the B multi-regional water supply system.