DOI QR코드

DOI QR Code

Drought risk assessment considering regional socio-economic factors and water supply system

지역의 사회·경제적 인자와 용수공급체계를 고려한 가뭄 위험도 평가

  • Kim, Ji Eun (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Kim, Min Ji (Department of Smart City Engineering, Hanyang University) ;
  • Choi, Sijung (Department of Water Resources and River Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Joo-Heon (Department of Civil Engineering, Joongbu University) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University (ERICA))
  • 김지은 (한양대학교 대학원 건설환경시스템공학과) ;
  • 김민지 (한양대학교 대학원 스마트시티공학과) ;
  • 최시중 (한국건설기술연구원 수자원하천연구본부) ;
  • 이주헌 (중부대학교 건축토목공학부) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과)
  • Received : 2022.05.08
  • Accepted : 2022.07.08
  • Published : 2022.08.31

Abstract

Although drought is a natural phenomenon, its damage occurs in combination with regional physical and social factors. Especially, related to the supply and demand of various waters, drought causes great socio-economic damage. Even meteorological droughts occur with similar severity, its impact varies depending on the regional characteristics and water supply system. Therefore, this study assessed regional drought risk considering regional socio-economic factors and water supply system. Drought hazard was assessed by grading the joint drought management index (JDMI) which represents water shortage. Drought vulnerability was assessed by weighted averaging 10 socio-economic factors using Entropy, Principal Component Analysis (PCA), and Gaussian Mixture Model (GMM). Drought response capacity that represents regional water supply factors was assessed by employing Bayesian networks. Drought risk was determined by multiplying a cubic root of the hazard, vulnerability, and response capacity. For the drought hazard meaning the possibility of failure to supply water, Goesan-gun was the highest at 0.81. For the drought vulnerability, Daejeon was most vulnerable at 0.61. Considering the regional water supply system, Sejong had the lowest drought response capacity. Finally, the drought risk was the highest in Cheongju-si. This study identified the regional drought risk and vulnerable causes of drought, which is useful in preparing drought mitigation policy considering the regional characteristics in the future.

가뭄은 자연적 현상이지만, 지역의 물리적 및 사회적 요소와 결합되어 피해가 발생한다. 특히, 각종 용수 공급 및 수요과 연관되어 사회 경제적으로 큰 피해를 야기시킨다. 비슷한 심도의 기상학적 가뭄에도 지역의 특성과 용수공급체계에 따라 실제로 발생하는 가뭄 피해는 다르다. 본 연구에서는 지역의 사회·경제적 인자와 용수공급체계를 고려하여 가뭄 위험도를 평가하였다. 노출성은 용수공급 과부족량을 나타내는 결합가뭄관리지수(JDMI)를 등급화하여 평가하였다. 취약성은 가뭄에 영향을 받는 10개의 사회·경제적 인자에 엔트로피, PCA 및 GMM를 적용하여 가중평균하여 평가하였다. 대응능력은 지역의 용수능력을 나타내는 인자들을 베이지안 네트워크에 적용하여 평가하였다. 위험도는 노출성, 취약성 및 대응능력을 통합하여 결정하였다. 용수공급 실패 사상의 발생 가능성을 의미하는 가뭄 노출성을 평가한 결과, 괴산군이 0.81로 가장 높게 나타났다. 가뭄 취약성의 경우, 대전광역시가 0.61로 매우 취약한 것으로 나타났다. 지역의 용수공급체계가 고려된 가뭄 대응능력을 평가한 결과, 세종시가 가뭄 대응능력이 가장 낮은 것으로 나타났다. 마지막으로 위험도를 평가한 결과, 청주시가 가장 높게 나타났다. 이러한 결과를 통해 가뭄에 대한 위험 및 취약 원인을 파악하였으며, 향후 지역의 특성을 고려한 가뭄 피해 저감 정책 마련이 가능하다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(No. 020R1A2C1012919).

References

  1. Ahmadalipour, A. (2017). Multi-dimensional drought risk assessment based on socio-economic vulnerabilities and hydro-climatological factors. Ph. D. dissertation, Portland State University, Portland, OR, U.S.
  2. Ahn, S.R., Jeong, J.H., and Kim, S.J. (2016). "Assessing drought threats to agricultural water supplies under climate change by combining the SWAT and MODSIM models for the Geum River basin, South Korea." Hydrological Sciences Journal, Vol. 61, No. 15, pp. 2740-2753. https://doi.org/10.1080/02626667.2015.1112905
  3. Berhe, F.T., Melesse, A.M., Hailu, D., and Sileshi, Y. (2013). "MODSIM-based water allocation modeling of Awash River Basin, Ethiopia." Catena, Vol. 109, pp. 118-128. https://doi.org/10.1016/j.catena.2013.04.007
  4. Blauhut, V., Stahl, K., Stagge, J.H., Tallaksen, L.M., De Stefano, L., and Vogt, J. (2016). "Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors." Hydrology and Earth System Sciences, Vol. 20, No. 7, pp. 2779-2800. https://doi.org/10.5194/hess-20-2779-2016
  5. Choi, S.H. (2018). Drought risk index development for drought risk assessment. Master's Thesis, Seoul National University.
  6. Fan, G., Zhang, Y., He, Y., and Wang, K. (2017). "Risk assessment of drought in the Yangtze River Delta based on natural disaster risk theory." Discrete Dynamics in Nature and Society, Vol. 2017, 5682180.
  7. Kang, M.G., and Lee, G.M. (2012). "Multiple regression equations for estimating water supply capacities of dams considering influencing factors." Journal of Korea Water Resources Association, Vol. 45, pp. 1131-1141. (in Korean) https://doi.org/10.3741/JKWRA.2012.45.11.1131
  8. Kim, J.E., Park, J.Y., Lee, J.H., and Kim, T.W. (2019). "Socioeconomic vulnerability assessment of drought using principal component analysis and entropy method." Journal of Korea Water Resources Association, Vol. 52, pp. 441-449. (in Korean) https://doi.org/10.3741/JKWRA.2019.52.6.441
  9. Kim, J.E., Yu, J.S., Ryu, J.H., and Kim, T.W. (2021). "Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model." Natural Hazards, Vol. 109, pp. 707-724. https://doi.org/10.1007/s11069-021-04854-y
  10. Lee, J.H., Jun, H.D., Park, M.J., and Jung, J.H. (2011). "Flash flood risk assessment using PROMETHEE and Entropy method." Journal of Korean Society of Hazard Mitigation, Vol. 11, No. 3, pp. 151-156. (in Korean) https://doi.org/10.9798/KOSHAM.2011.11.3.151
  11. Liu, A., and Schisterman, E.F. (2004). "Principal component analysis." Encyclopedia of biopharmaceutical statistics, Edited by Chow S.C., CPC Press, NY, U.S.
  12. Park, J.Y., Yoo, J.Y., Lee, M.W., and Kim, T.W. (2012). "Assessment of drought risk in Korea: Focused on data-based drought risk map." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 4, pp. 203-211. (in Korean) https://doi.org/10.12652/Ksce.2012.32.4B.203
  13. Qin, Q.X., and Zhang, Y.B. (2018). "Evaluation and improvement of water supply capacity in the region." Journal of Management and Sustainability, Vol. 8, No. 4, pp. 113-124. https://doi.org/10.5539/jms.v8n4p113
  14. Russell, S., and Norvig, P. (2009). Artificial intelligence: A modern approach. Prentice Hall, NJ, U.S.
  15. Sam, A.S., Kumar, R., Kachele, H., and Muller, K. (2017). "Quantifying household vulnerability triggered by drought: Evidence from rural India." Climate and Development, Vol. 9, No. 7, pp. 618-633. https://doi.org/10.1080/17565529.2016.1193461
  16. Vargas, J., and Paneque, P. (2017). "Methodology for the analysis of causes of drought vulnerability on the river basin scale." Natural Hazards, Vol. 89, No. 2, pp. 609-621. https://doi.org/10.1007/s11069-017-2982-4
  17. Yu, J.S., Choi, S.J., Kwon, H.H., and Kim, T.W. (2018). "Future water supply risk analysis using a joint drought management index in Nakdong river basin." Journal of Korea Water Resources Association, Vol. 51, pp. 1117-1126. (in Korean) https://doi.org/10.3741/JKWRA.2018.51.S-1.1117
  18. Yu, J.S., Kim, J.E., Lee, J.H., and Kim, T.W. (2021). "Development of a PCA-based vulnerability and copula-based hazard analysis for assessing regional drought risk." KSCE Journal of Civil Engineering, Vol. 25, pp. 1901-1908. (in Korean) https://doi.org/10.1007/s12205-021-0922-z