• Title/Summary/Keyword: redox

Search Result 1,419, Processing Time 0.026 seconds

Functional Diversity of Cysteine Residues in Proteins and Unique Features of Catalytic Redox-active Cysteines in Thiol Oxidoreductases

  • Fomenko, Dmitri E.;Marino, Stefano M.;Gladyshev, Vadim N.
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.228-235
    • /
    • 2008
  • Thiol-dependent redox systems are involved in regulation of diverse biological processes, such as response to stress, signal transduction, and protein folding. The thiol-based redox control is provided by mechanistically similar, but structurally distinct families of enzymes known as thiol oxidoreductases. Many such enzymes have been characterized, but identities and functions of the entire sets of thiol oxidoreductases in organisms are not known. Extreme sequence and structural divergence makes identification of these proteins difficult. Thiol oxidoreductases contain a redox-active cysteine residue, or its functional analog selenocysteine, in their active sites. Here, we describe computational methods for in silico prediction of thiol oxidoreductases in nucleotide and protein sequence databases and identification of their redox-active cysteines. We discuss different functional categories of cysteine residues, describe methods for discrimination between catalytic and noncatalytic and between redox and non-redox cysteine residues and highlight unique properties of the redox-active cysteines based on evolutionary conservation, secondary and three-dimensional structures, and sporadic replacement of cysteines with catalytically superior selenocysteine residues.

Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

  • Putker, Marrit;O'Neill, John Stuart
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.6-19
    • /
    • 2016
  • Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redoxsensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian timekeeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological timekeeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

Redox Pairs in Redox Flow Batteries (레독스 플로우 전지의 레독스 쌍)

  • Hwang, Byunghyun;Kim, Ketack
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.99-110
    • /
    • 2013
  • Redox flow batteries are attractive energy-storage devices for renewable energy and peak-power energy control. Even though some prototypes are available already, many new materials are under development for new battery systems. In this reports, redox pairs and theirs properties are explained, by which one can understand issues with redox pairs, such as contaminations, cross-over, ionic selectivity, and solubility. Batteries that have the same redox pairs in both electrode compartments can be operated longer than those with different redox pairs due to the prevention form the cross-contamination. There are undivided redox flow batteries that have no membrane, which is another direction improving cycle life of the batteries.

Characterization of Electric Double-Layer Capacitor with 0.75M NaI and 0.5 M VOSO4 Electrolyte

  • Chun, Sang-Eun;Yoo, Seung Joon;Boettcher, Shannon W.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2018
  • We describe a redox-enhanced electric double-layer capacitor (EDLC) that turns the electrolyte in a conventional EDLC into an integral, active component for charge storage-charge is stored both through faradaic reactions with soluble redox-active molecules in the electrolyte, and through the double-layer capacitance in a porous carbon electrode. The mixed-redox electrolyte, composed of vanadium and iodides, was employed to achieve high power density. The electrochemical reaction in a supercapacitor with vanadium and iodide was studied to estimate the charge capacity and energy density of the redox supercapacitor. A redox supercapacitor with a mixed electrolyte composed of 0.75 M NaI and 0.5 M $VOSO_4$ was fabricated and studied. When charged to a potential of 1 V, faradaic charging processes were observed, in addition to the capacitive processes that increased the energy storage capabilities of the supercapacitor. The redox supercapacitor achieved a specific capacity of 13.44 mAh/g and an energy density of 3.81 Wh/kg in a simple Swagelok cell. A control EDLC with 1 M $H_2SO_4$ yielded 7.43 mAh/g and 2.85 Wh/kg. However, the relatively fast self-discharge in the redox-EDLC may be due to the shuttling of the redox couple between the polarized carbon electrodes.

The Study on the Gragting Rate MAA onto Silk Fiber by Redox System (Redox계에 의한 MAA Gragt 속도에 관한 연구)

  • 배도규;김종호
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.1
    • /
    • pp.62-66
    • /
    • 1997
  • The MAA graftings in silk fiber were done by redox system for the purpose of investingating the effect of ferrous sulfate additive on the grafting rate and graft ratio in various conditions. The graft ratio was higher in redox graft system than in peroxide graft system and the graft ratio in redox graft system was also higher depending on decrease of ferrous sulfate additive. The saturation graft ratio obtained by empirical equation, log X=K/t, was increasing depending on the increase of ferrous sulfate additive. Initial grafting rate was increased but the latter grafting rate was decreased in redox graft system. The effects of liquor ratio(L.R.) on the graft ratio in redox graft system, were higher in high L.R. than in low L.R..

  • PDF

Low-temperature Dyeing of Silk Fabrics using a Glyoxal/Hydrogen peroxide Redox System (Glyoxal/Hydrogen peroxide-Redox System을 사용한 견직물의 저온염색)

  • 이내연;백두현;임종열;임영훈
    • Textile Coloration and Finishing
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 1994
  • A low-temperature dyeing system for silk fabrics based on a redox system has been investigated. Some factors affecting dyeing of silk fabrics with levelling acid dyes in the absence and presence of certain redox system were investigated under different conditions. The variables studied were; type and concentration of redox system, dyeing conditions, i. e. temperature and time, dye concentration, material-to-liquor ration(LR) and colour fastness. The colour strength(K/S value) is outstandingly higher in the presence than in the absence of redox system. A comparison between the colour strength values of such dyeings abtained the three redox system would call for the following order ; Glyoxal/hydrogen peroxide>thiourea/hydrogen peroxide>glucose/hydrgen peroxide> nothing. In the presence of redox system, free radicals are supposed to be formed in both the fiber and the dye and the interaction between these free radicals bring about covalent fixation beside the usual electrostatic bonds, hydrogen bonds and Van der Waals forces.

  • PDF

Antioxidant enzymes as redox-based biomarkers: a brief review

  • Yang, Hee-Young;Lee, Tae-Hoon
    • BMB Reports
    • /
    • v.48 no.4
    • /
    • pp.200-208
    • /
    • 2015
  • The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease. [BMB Reports 2015; 48(4): 200-208]

Electrochemical Properties of Graphite-based Electrodes for Redox Flow Batteries

  • Kim, Hyung-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.571-575
    • /
    • 2011
  • Graphite-based electrodes were prepared using synthetic graphite (MCMB 1028) or natural graphite (NG) powder using a dimensionally stable anode (DSA) as a substrate. Their electrochemical properties were investigated in vanadiumbased electrolytes to determine how to increase the durability and improve the energy efficiency of redox flow batteries. Cyclic voltammetry (CV) was performed in the voltage range of -0.7 V to 1.6 V vs. SCE at various scan rates to analyze the vanadium redox reaction. The graphite-based electrodes showed a fast redox reaction and good reversibility in a highly concentrated acidic electrolyte. The increased electrochemical activity of the NG-based electrode for the $V^{4+}/V^{5+}$ redox reaction can be attributed to the increased surface concentration of functional groups from the addition of conductive material that served as a catalyst. Therefore, it is expected that this electrode can be used to increase the power density and energy density of redox flow batteries.

$^1H$ NMR Estimation of Multi-Redox potentials of Cytochrome $c_3$ from Desulfovibrio vulgaris Hildenborough

  • 박장수;강신원;최성낙
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.331-336
    • /
    • 1995
  • The macroscopic and microscopic redox potentials of tetrahemoprotein, cytochrome c3 from Desulfovibrio vulgaris(Hildenborough) (DvH) were estimated from 1H NMR and differential pulse polarography(DPP). Five sets of NMR resonances were confirmed by a redox titration. They represent cytochrome c3 molecules in five macroscopic redox states. The electron transfer in cytochrome c3 involves four consecutive one-electron steps. The saturation transfer method was used to determine the chemical shifts of eight heme methyl resonances in five different oxidation states. Thirty two microscopic redox potentials were estimated. The results showed the presence of a strong positive interaction between a pair of particular hemes. Comparing the results with those of Desulfovibrio vulgaris Miyazaki F (DvMF), it was observed that the two proteins resemble each other in overall redox pattern, but there is small difference in the relative redox potentials of four hemes.

Redox Reaction Investigation of Graphene Nanoribbon

  • Yu, Young-Jun
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.35-37
    • /
    • 2018
  • The redox reaction on graphene nanoribbon (GNR) field effect transistors(FET) has been studied. In detail, upon employing an electrolyte gating, we verified electron transport performance modulation of GNR FET by monitoring conductance variation under oxidation and reduction processes. The conductance enhancement of GNR via removal of PMMA residue on graphene surface during redox cycles was also observed.