DOI QR코드

DOI QR Code

Redox Pairs in Redox Flow Batteries

레독스 플로우 전지의 레독스 쌍

  • Received : 2013.05.28
  • Accepted : 2013.07.31
  • Published : 2013.08.31

Abstract

Redox flow batteries are attractive energy-storage devices for renewable energy and peak-power energy control. Even though some prototypes are available already, many new materials are under development for new battery systems. In this reports, redox pairs and theirs properties are explained, by which one can understand issues with redox pairs, such as contaminations, cross-over, ionic selectivity, and solubility. Batteries that have the same redox pairs in both electrode compartments can be operated longer than those with different redox pairs due to the prevention form the cross-contamination. There are undivided redox flow batteries that have no membrane, which is another direction improving cycle life of the batteries.

레독스 플로우 전지(RFB)는 대형에너지 장치로서 신재생 에너지와 같은 전력발생이 일정하지 못한 상황이나 전력수요가 급증감하여 효율적인 에너지의 운용이 요구될 때 효과적으로 사용할 수 있는 전지모델이다. 일부 상용화된 종류도 있지만 다양한 레독스 쌍과 소재가 연구됨에 따라 개선의 여지가 많은 전지이다. 본 총설에서는 전지의 레독스 쌍(redox pair)의 종류들에 대한 설명을 통하여 레독스 플로우 전지의 전반적인 이해를 돕고자 한다. 레독스 쌍의 혼합오염, crossover, 이온 선택성, 용해도 등의 개선을 통해서 새로운 레독스 플로우 전지의 탄생을 기대할 수 있다. 용량의 개선을 위해서 다양한 수계 및 비수계 레독스 쌍의 연구가 되고 있는데 crossover에 의해 다소의 용량손실이 있다고 하더라도 혼합오염이 없는 전지라면 레독스 플로우 전지의 내구성의 장점을 살릴 수 있을 것이라 기대한다. 혼합오염이 없는 레독스 플로우 전지 중에는 멤브레인이 필요 없는 전지도 새로운 연구방향으로 모색되고 있다.

Keywords

References

  1. C. Ponce de Len, A. Fras-Ferrer, J. Gonzlez-Garca, D. A. Sznto and F. C. Walsh, 'Redox flow cells for energy conversion', Journal of Power Sources, 160, 716 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.095
  2. M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli and M. Saleem, 'Progress in Flow Battery Research and Development', Journal of The Electrochemical Society, 158, R55, (2011). https://doi.org/10.1149/1.3599565
  3. A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick and Q. Liu, 'Redox flow batteries: a review', Journal of Applied Electrochemistry, 41, 1137 (2011). https://doi.org/10.1007/s10800-011-0348-2
  4. H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li and Y. Ding, 'Progress in electrical energy storage system: A critical review', Progress in Natural Science, 19, 291 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014
  5. http://www.sandia.gov.
  6. N. A. Chaniotakis, S. B. Park and M. E. Meyerhoff, 'Salicylate-selective membrane electrode based on tin(IV)-tetraphenylporphyrin', Analytical Chemistry, 61, 566 (1989). https://doi.org/10.1021/ac00181a013
  7. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu, 'Electrochemical Energy Storage for Green Grid', Chemical Reviews, 111, 3577 (2011). https://doi.org/10.1021/cr100290v
  8. http://redflow.com.
  9. G. Moritz, C. Muehle, M. Anerella, A. Ghosh, W. Sampson, P. Wanderer, E. Willen, N. Agapov, H. Khodzhibagiyan, A. Kovalenko, W. V. Hassenzahl and M. N. Wilson, 'Towards fast-pulsed superconducting synchrotron magnets', Particle Accelerator Conference, 2001. PAC 2001. Proceedings of the 2001, 1, 211 vol.1, (2001).
  10. D. L. a. T. B. Reddt, 'handbook of batteries 3th', McGraw-Hill companies, Inc, 1454, (2001).
  11. V. E. Brunini, Y.-M. Chiang and W. C. Carter, 'Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries', Electrochimica Acta, 69, 301 (2012). https://doi.org/10.1016/j.electacta.2012.03.006
  12. Y. Matsuda, K. Tanaka, M. Okada, Y. Takasu, M. Morita and T. Matsumura-Inoue, 'A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte', Journal of Applied Electrochemistry, 18, 909 (1988). https://doi.org/10.1007/BF01016050
  13. Q. Liu, A. E. S. Sleightholme, A. A. Shinkle, Y. Li and L. T. Thompson, 'Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries', Electrochem. Commun., 11, 2312 (2009). https://doi.org/10.1016/j.elecom.2009.10.006
  14. J. Mun, M.-J. Lee, J.-W. Park, D.-J. Oh, D.-Y. Lee and S.-G. Doo, 'Non-Aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2′-bipyridine) Complex Electrolyte', Electrochemical and Solid-State Letters, 15, A80 (2012). https://doi.org/10.1149/2.033206esl
  15. A. A. Shinkle, A. E. S. Sleightholme, L. D. Griffith, L. T. Thompson and C. W. Monroe, 'Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery', Journal of Power Sources, 206, 490 (2012). https://doi.org/10.1016/j.jpowsour.2010.12.096
  16. L. H. Thaller, 'Redox flow cell energy storage systems', Medium: X; Size: Pages: 12, (1979).
  17. M. A. Hoberecht and L. H. Thaller, 'Performance mapping studies in Redox flow cells', Medium: X; Size: Pages: 12, (1981).
  18. W. A. W. Russell B. Hodgdon, 'Anion permselective membrane', NASA-CR-167872, (1982).
  19. R. B. H. Samuel S. Alexander, Warren A. Waite, 'Anion permselective membrane', NASA-CR-159599, (1979).
  20. C. H. Bae, E. P. L. Roberts and R. A. W. Dryfe, 'Chromium redox couples for application to redox flow batteries', Electrochimica Acta, 48, 279 (2002). https://doi.org/10.1016/S0013-4686(02)00649-7
  21. M. Bartolozzi, 'Development of redox flow batteries. A historical bibliography', Journal of Power Sources, 27, 219 (1989). https://doi.org/10.1016/0378-7753(89)80037-0
  22. G. Codina, G. Sanchez and A. Aldaz, 'Digital simulation of cyclic voltammetry on heterogenous electrodes', Electrochimica Acta, 36, 1129 (1991). https://doi.org/10.1016/0013-4686(91)85099-S
  23. G. Codina and A. Aldaz, 'Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis', Journal of Applied Electrochemistry, 22, 668 (1992). https://doi.org/10.1007/BF01092617
  24. G. Codina, J. R. Perez, M. Lopez-Atalaya, J. L. Vasquez and A. Aldaz, 'Development of a 0.1 kW power accumulation pilot plant based on an Fe/Cr redox flow battery Part I. Considerations on flow-distribution design', Journal of Power Sources, 48, 293 (1994). https://doi.org/10.1016/0378-7753(94)80026-X
  25. M. Lopez-Atalaya, G. Codina, J. R. Perez, J. L. Vazquez and A. Aldaz, 'Optimization studies on a Fe/Cr redox flow battery', Journal of Power Sources, 39, 147 (1992). https://doi.org/10.1016/0378-7753(92)80133-V
  26. M. Lopez-Atalaya, G. Codina, J. R. Perez, J. L. Vazquez, A. Aldaz and M. A. Climent, 'Behaviour of the Cr(III)/ Cr(II) reaction on goldgraphite electrodes. Application to redox flow storage cell', Journal of Power Sources, 35, 225 (1991). https://doi.org/10.1016/0378-7753(91)80108-A
  27. F. C. Walsh, 'Electrochemical technology for environmental treatment and clean energy conversion', Pure and Applied Chemistry, 73, 1819 (2001). https://doi.org/10.1351/pac200173121819
  28. A. Price, S. Bartley, S. Male and G. Cooley, 'Novel approach to utility scale energy storage', Power Engineering Journal, 13, 122 (1999). https://doi.org/10.1049/pe:19990304
  29. S. Licht and J. Davis, 'Disproportionation of aqueous sulfur and sulfide: Kinetics of polysulfide decomposition', Journal of Physical Chemistry B, 101, 2540 (1997). https://doi.org/10.1021/jp962661h
  30. E. Sum and M. Skyllas-Kazacos, 'A study of the V(II)/ V(III) redox couple for redox flow cell applications', Journal of Power Sources, 15, 179 (1985). https://doi.org/10.1016/0378-7753(85)80071-9
  31. M. Skyllas-Kazacos, M. Rychcik, R. G. Robins, A. G. Fane and M. A. Green, 'New all-vanadium redox flow cell', Journal Name: J. Electrochem. Soc.; (United States); Journal Volume: 133, Medium: X; Size: Pages: 1057 (1986). https://doi.org/10.1149/1.2108706
  32. M. Skyllas-Kazacos and F. Grossmith, 'Efficient Vanadium Redox Flow Cell', Journal of The Electrochemical Society, 134, 2950 (1987). https://doi.org/10.1149/1.2100321
  33. M. S.-K. a. R. Robins, 'All-vanadium redox battery', U.S. Pat. 4, 786, 567 (1986).
  34. M. Skyllas-Kazacos, C. Peng and M. Cheng, 'Evaluation of Precipitation Inhibitors for Supersaturated Vanadyl Electrolytes for the Vanadium Redox Battery', Electrochemical and Solid-State Letters, 2, 121 (1999). https://doi.org/10.1149/1.1390754
  35. G. Oriji, Y. Katayama and T. Miura, 'Investigation on V(IV)/V(V) species in a vanadium redox flow battery', Electrochimica Acta, 49, 3091 (2004). https://doi.org/10.1016/j.electacta.2004.02.020
  36. M. Skyllas-Kazacos, D. Kasherman, D. R. Hong and M. Kazacos, 'Characteristics and performance of 1 kW UNSW vanadium redox battery', Journal of Power Sources, 35, 399 (1991). https://doi.org/10.1016/0378-7753(91)80058-6
  37. M. Skyllas-Kazacos, G. Kazacos, G. Poon and H. Verseema, 'Recent advances with UNSW vanadiumbased redox flow batteries', International Journal of Energy Research, 34, 182 (2010). https://doi.org/10.1002/er.1658
  38. M. Skyllas-Kazacos, C. Menictas and M. Kazacos, 'Thermal Stability of Concentrated V(V) Electrolytes in the Vanadium Redox Cell', Journal of The Electrochemical Society, 143, L86 (1996). https://doi.org/10.1149/1.1836609
  39. M. Kazacos, M. Cheng and M. Skyllas-Kazacos, 'Vanadium redox cell electrolyte optimization studies', Journal of Applied Electrochemistry, 20, 463 (1990). https://doi.org/10.1007/BF01076057
  40. T. Mohammadi and M. Skyllas-Kazacos, 'Preparation of sulfonated composite membrane for vanadium redox flow battery applications', Journal of Membrane Science, 107, 35 (1995). https://doi.org/10.1016/0376-7388(95)00096-U
  41. T. Mohammadi and M. Skyllas-Kazacos, 'Characterisation of novel composite membrane for redox flow battery applications', Journal of Membrane Science, 98, 77 (1995). https://doi.org/10.1016/0376-7388(94)00178-2
  42. T. Mohammadi and M. S. Kazacos, 'Evaluation of the chemical stability of some membranes in vanadium solution', Journal of Applied Electrochemistry, 27, 153 (1997). https://doi.org/10.1023/A:1018495722379
  43. X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu and L. Chen, 'Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery', Journal of Power Sources, 189, 1240 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.040
  44. C. Jia, J. Liu and C. Yan, 'A significantly improved membrane for vanadium redox flow battery', Journal of Power Sources, 195, 4380 (2010). https://doi.org/10.1016/j.jpowsour.2010.02.008
  45. http://www.gildemeister.com.
  46. D. J. Eustace, 'Bromine Complexation in Zinc-Bromine Circulating Batteries', Journal of The Electrochemical Society, 127, 528 (1980). https://doi.org/10.1149/1.2129706
  47. M. Skyllas-Kazacos, 'Novel vanadium chloride/polyhalide redox flow battery', Journal of Power Sources, 124, 299 (2003). https://doi.org/10.1016/S0378-7753(03)00621-9
  48. H. Vafiadis and M. Skyllas-Kazacos, 'Evaluation of membranes for the novel vanadium bromine redox flow cell', Journal of Membrane Science, 279, 394 (2006). https://doi.org/10.1016/j.memsci.2005.12.028
  49. M. Skyllas-Kazacos, US 2004/020234843 A1, (2004).
  50. D. Pletcher and R. Wills, 'A novel flow battery-A lead acid battery based on an electrolyte with soluble lead(II): III. The influence of conditions on battery performance', Journal of Power Sources, 149, 96 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.048
  51. D. Pletcher, H. Zhou, G. Kear, C. T. J. Low, F. C. Walsh and R. G. A. Wills, 'A novel flow battery-A lead-acid battery based on an electrolyte with soluble lead(II): Part VI. Studies of the lead dioxide positive electrode', Journal of Power Sources, 180, 630 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.025
  52. A. Hazza, D. Pletcher and R. Wills, 'A novel flow battery -A lead acid battery based on an electrolyte with soluble lead(II): IV. The influence of additives', Journal of Power Sources, 149, 103 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.049
  53. X. Li, D. Pletcher and F. C. Walsh, 'A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II): Part VII. Further studies of the lead dioxide positive electrode', Electrochimica Acta, 54, 4688 (2009). https://doi.org/10.1016/j.electacta.2009.03.075
  54. J. Collins, X. Li, D. Pletcher, R. Tangirala, D. Stratton- Campbell, F. C. Walsh and C. Zhang, 'A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part IX: Electrode and electrolyte conditioning with hydrogen peroxide', Journal of Power Sources, 195, 2975 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.109
  55. Y. Ito, M. Nyce, R. Plivelich, M. Klein, D. Steingart and S. Banerjee, 'Zinc morphology in zincnickel flow assisted batteries and impact on performance', Journal of Power Sources, 196, 2340 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.065
  56. J. Cheng, L. Zhang, Y.-S. Yang, Y.-H. Wen, G.-P. Cao and X.-D. Wang, 'Preliminary study of single flow zincnickel battery', Electrochem. Commun., 9, 2639 (2007). https://doi.org/10.1016/j.elecom.2007.08.016
  57. J. Cheng, Y.-H. Wen, G.-P. Cao and Y.-S. Yang, 'Influence of zinc ions in electrolytes on the stability of nickel oxide electrodes for single flow zincnickel batteries', Journal of Power Sources, 196, 1589 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.009
  58. D. You, H. Zhang and J. Chen, 'A simple model for the vanadium redox battery', Electrochimica Acta, 54, 6827 (2009). https://doi.org/10.1016/j.electacta.2009.06.086
  59. C. P. Zhang, S. M. Sharkh, X. Li, F. C. Walsh, C. N. Zhang and J. C. Jiang, 'The performance of a soluble lead-acid flow battery and its comparison to a static leadacid battery', Energy Conversion and Management, 52, 3391 (2011). https://doi.org/10.1016/j.enconman.2011.07.006
  60. P. K. Leung, C. Ponce de Leon and F. C. Walsh, 'The influence of operational parameters on the performance of an undivided zinccerium flow battery', Electrochimica Acta, 80, 7 (2012). https://doi.org/10.1016/j.electacta.2012.06.074
  61. P. K. Leung, C. Ponce-de-Len, C. T. J. Low, A. A. Shah and F. C. Walsh, 'Characterization of a zinccerium flow battery', Journal of Power Sources, 196, 5174 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.095
  62. T. Yamamura, Y. Shiokawa, H. Yamana and H. Moriyama, 'Electrochemical investigation of uranium $\beta$-diketonates for all-uranium redox flow battery', Electrochimica Acta, 48, 43 (2002). https://doi.org/10.1016/S0013-4686(02)00546-7
  63. T. Yamamura, N. Watanabe and Y. Shiokawa, 'Energy efficiency of neptunium redox battery in comparison with vanadium battery', Journal of Alloys and Compounds, 408, 1260 (2006).
  64. R. L. Clarke, US 2004/0202925 A1, (2004).
  65. P. K. Leung, C. Ponce de Len, C. T. J. Low and F. C. Walsh, 'Ce(III)/Ce(IV) in methanesulfonic acid as the positive half cell of a redox flow battery', Electrochimica Acta, 56, 2145 (2011). https://doi.org/10.1016/j.electacta.2010.12.038
  66. R. P. Kreh, R. M. Spotnitz and J. T. Lundquist, 'Mediated electrochemical synthesis of aromatic aldehydes, ketones, and quinones using ceric methanesulfonate', The Journal of Organic Chemistry, 54, 1526 (1989). https://doi.org/10.1021/jo00268a010
  67. J. Jorn, J. T. Kim and D. Kralik, 'The zinc-chlorine battery: half-cell overpotential measurements', Journal of Applied Electrochemistry, 9, 573 (1979). https://doi.org/10.1007/BF00610944
  68. A. Paulenova, S. E. Creager, J. D. Navratil and Y. Wei, 'Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions', Journal of Power Sources, 109, 431 (2002). https://doi.org/10.1016/S0378-7753(02)00109-X
  69. J.-H. Kim, K. J. Kim, M.-S. Park, N. J. Lee, U. Hwang, H. Kim and Y.-J. Kim, 'Development of metal-based electrodes for non-aqueous redox flow batteries', Electrochem. Commun., 13, 997 (2011). https://doi.org/10.1016/j.elecom.2011.06.022
  70. Q. Liu, A. A. Shinkle, Y. Li, C. W. Monroe, L. T. Thompson and A. E. S. Sleightholme, 'Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries', Electrochem. Commun., 12, 1634 (2010). https://doi.org/10.1016/j.elecom.2010.09.013
  71. A. E. S. Sleightholme, A. A. Shinkle, Q. Liu, Y. Li, C. W. Monroe and L. T. Thompson, 'Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries', Journal of Power Sources, 196, 5742 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.020
  72. T. Yamamura, K. Shirasaki, Y. Shiokawa, Y. Nakamura and S. Y. Kim, 'Characterization of tetraketone ligands for active materials of all-uranium redox flow battery', Journal of Alloys and Compounds, 374, 349 (2004). https://doi.org/10.1016/j.jallcom.2003.11.117
  73. K. Shirasaki, T. Yamamura and Y. Shiokawa, 'Electrolytic preparation, redox titration and stability of pentavalent state of uranyl tetraketonate in dimethyl sulfoxide', Journal of Alloys and Compounds, 408, 1296 (2006).
  74. T. Yamamura, K. Shirasaki, D. X. Li and Y. Shiokawa, 'Electrochemical and spectroscopic investigations of uranium(III) with N,N,N',N'-tetramethylmalonamide in DMF', Journal of Alloys and Compounds, 418, 139 (2006). https://doi.org/10.1016/j.jallcom.2005.10.055
  75. S.-H. Shin, S.-H. Yun and S.-H. Moon, 'A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective', RSC Advances, 3, 9095 (2013). https://doi.org/10.1039/c3ra00115f
  76. K. Hasegawa, A. Kimura, T. Yamamura and Y. Shiokawa, 'Estimation of energy efficiency in neptunium redox flow batteries by the standard rate constants', Journal of Physics and Chemistry of Solids, 66, 593 (2005). https://doi.org/10.1016/j.jpcs.2004.07.018
  77. Y. Shiokawa, H. Yamana and H. Moriyama, 'An Application of Actinide Elements for a Redox Flow Battery', Journal of Nuclear Science and Technology, 37, 253 (2000). https://doi.org/10.1080/18811248.2000.9714891

Cited by

  1. Prediction of Life Time of Ion-exchange Membranes in Vanadium Redox Flow Battery vol.19, pp.1, 2016, https://doi.org/10.5229/JKES.2016.19.1.14
  2. Perfluorinated Sulfonic Acid based Composite Membranes for Vanadium Redox Flow Battery vol.19, pp.1, 2016, https://doi.org/10.5229/JKES.2016.19.1.21
  3. Numerical Investigation of the Discharge Efficiency of a Vanadium Redox Flow Battery with Varying Temperature and Ion Concentration vol.40, pp.12, 2016, https://doi.org/10.3795/KSME-B.2016.40.12.769
  4. Analysis of Electricity Cost Saving Effect by the Optimal load shifting Operation with 1MWh Redox Flow Battery vol.65, pp.7, 2016, https://doi.org/10.5370/KIEE.2016.65.7.1151