DOI QR코드

DOI QR Code

Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

  • Received : 2015.11.23
  • Accepted : 2015.11.26
  • Published : 2016.01.31

Abstract

Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redoxsensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian timekeeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological timekeeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

Keywords

References

  1. Abate, C., Patel, L., Rauscher, F.J., and Curran, T. (1990). Redox regulation of fos and jun DNA-binding activity in vitro. Science 249, 1157-1161. https://doi.org/10.1126/science.2118682
  2. Anea, C.B., Zhang, M., Chen, F., Ali, M.I., Hart, C.M.M., Stepp, D.W., Kovalenkov, Y.O., Merloiu, A.-M., Pati, P., Fulton, D., et al. (2013). Circadian clock control of Nox4 and reactive oxygen species in the vasculature. PLoS One 8, e78626. https://doi.org/10.1371/journal.pone.0078626
  3. Aon, M. a., Cortassa, S., Marban, E., and O'Rourke, B. (2003). Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J. Biol. Chem. 278, 44735-44744. https://doi.org/10.1074/jbc.M302673200
  4. Asher, G., and Schibler, U. (2011). Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 13, 125-137. https://doi.org/10.1016/j.cmet.2011.01.006
  5. Asher, G., Gatfield, D., Stratmann, M., Reinke, H., Dibner, C., Kreppel, F., Mostoslavsky, R., Alt, F.W., and Schibler, U. (2008). SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317-328. https://doi.org/10.1016/j.cell.2008.06.050
  6. Atger, F., Gobet, C., Marquis, J., Martin, E., Wang, J., Weger, B., Lefebvre, G., Descombes, P., Naef, F., and Gachon, F. (2015). Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proc. Natl. Acad. Sci. USA 112, E6579-88. https://doi.org/10.1073/pnas.1515308112
  7. Bass, J. (2012). Circadian topology of metabolism. Nature 491, 348-356. https://doi.org/10.1038/nature11704
  8. Bass, J., and Takahashi, J.S. (2010). Circadian integration of metabolism and energetics. Science 330, 1349-1354. https://doi.org/10.1126/science.1195027
  9. Bieler, J., Cannavo, R., Gustafson, K., Gobet, C., Gatfield, D., and Naef, F. (2014). Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol. Syst. Biol. 10, 739. https://doi.org/10.15252/msb.20145218
  10. Bindoli, A., and Rigobello, M.P. (2012). Principles in redox signaling:from chemistry to functional significance. Antioxid. Redox Signal. 18, 1-97.
  11. Brody, S., and Harris, S. (1973). Circadian rhythms in neurospora:spatial differences in pyridine nucleotide levels. Science 180, 498-500. https://doi.org/10.1126/science.180.4085.498
  12. Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015. https://doi.org/10.1126/science.1094637
  13. Bulleid, N.J., and Ellgaard, L. (2011). Multiple ways to make disulfides. Trends Biochem. Sci. 36, 485-492. https://doi.org/10.1016/j.tibs.2011.05.004
  14. Bunger, M.K., Wilsbacher, L.D., Moran, S.M., Clendenin, C., Radcliffe, L. a., Hogenesch, J.B., Simon, M.C., Takahashi, J.S., and Bradfield, C. a. (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009-1017. https://doi.org/10.1016/S0092-8674(00)00205-1
  15. Burgoyne, J.R., Madhani, M., Cuello, F., Charles, R.L., Brennan, J.P., Schroder, E., Browning, D.D., and Eaton, P. (2007). Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317, 1393-1397. https://doi.org/10.1126/science.1144318
  16. Burgoyne, J.R., Rudyk, O., Cho, H., Prysyazhna, O., Hathaway, N., Weeks, A., Evans, R., Ng, T., Schroder, K., Brandes, R.P., et al. (2015). Deficient angiogenesis in redox-dead Cys17Ser $PKARI{\alpha}$ knock-in mice. Nat. Commun. 6, 7920. https://doi.org/10.1038/ncomms8920
  17. Cardone, L., Hirayama, J., Giordano, F., Tamaru, T., Palvimo, J., and Sassone-Corsi, P. (2005). Circadian clock control by SUMOylation of BMAL1. Science 309, 1390-1394. https://doi.org/10.1126/science.1110689
  18. Causton, H.C., Feeney, K.A., Ziegler, C.A., and O'Neill, J.S. (2015). Metabolic cycles in yeast share features conserved among circadian rhythms. Curr. Biol. 25, 1056-1062. https://doi.org/10.1016/j.cub.2015.02.035
  19. Chang, T.-S., Jeong, W., Woo, H.A., Lee, S.M., Park, S., and Rhee, S.G. (2004). Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279, 50994-51001. https://doi.org/10.1074/jbc.M409482200
  20. Chaudhury, D., Wang, L.M., and Colwell, C.S. (2005). Circadian regulation of hippocampal long-term potentiation. J. Biol. Rhythms 20, 225-236. https://doi.org/10.1177/0748730405276352
  21. Chen, R., Schirmer, A., Lee, Y., Lee, H., Kumar, V., Yoo, S.-H., Takahashi, J.S., and Lee, C. (2009). Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol. Cell 36, 417-430. https://doi.org/10.1016/j.molcel.2009.10.012
  22. Cho, C.S., Yoon, H.J., Kim, J.Y., Woo, H.A., and Rhee, S.G. (2014). Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells. Proc. Natl. Acad. Sci. USA 111, 12043-12048. https://doi.org/10.1073/pnas.1401100111
  23. Cotto-Rios, X.M., Bekes, M., Chapman, J., Ueberheide, B., and Huang, T.T. (2012). Deubiquitinases as a signaling target of oxidative stress. Cell Rep. 2, 1-10. https://doi.org/10.1016/j.celrep.2012.05.015
  24. Cremers, C.M., and Jakob, U. (2013). Oxidant sensing by reversible disulfide bond formation. J. Biol. Chem. 288, 26489-26496. https://doi.org/10.1074/jbc.R113.462929
  25. Czech, M.P., Lawrence, J.C., and Lynn, W.S. (1974). Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. Proc. Natl. Acad. Sci. USA 71, 4173-4177. https://doi.org/10.1073/pnas.71.10.4173
  26. Dansen, T.B., Smits, L.M.M., van Triest, M.H., de Keizer, P.L.J., van Leenen, D., Koerkamp, M.G., Szypowska, A., Meppelink, A., Brenkman, A.B., Yodoi, J., et al. (2009). Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat. Chem. Biol. 5, 664-672. https://doi.org/10.1038/nchembio.194
  27. DeBruyne, J.P., Noton, E., Lambert, C.M., Maywood, E.S., Weaver, D.R., and Reppert, S.M. (2006). A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50, 465-477. https://doi.org/10.1016/j.neuron.2006.03.041
  28. Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation. Cell 111, 471-481. https://doi.org/10.1016/S0092-8674(02)01048-6
  29. Dickinson, B.C. (2015). Plugging the leak Synergistic MRSA combinations. Nat. Publ. Gr. 11, 831-832.
  30. Dunlap, J.C. (1999). Molecular bases for circadian clocks. Cell 96, 271-290. https://doi.org/10.1016/S0092-8674(00)80566-8
  31. Edgar, R.S., Green, E.W., Zhao, Y., van Ooijen, G., Olmedo, M., Qin, X., Xu, Y., Pan, M., Valekunja, U.K., Feeney, K.A., et al. (2012). Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459-464. https://doi.org/10.1038/nature11088
  32. Eide, E.J., Woolf, M.F., Kang, H., Woolf, P., Hurst, W., Camacho, F., Vielhaber, E.L., Giovanni, A., and Virshup, D.M. (2005). Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol. Cell. Biol. 25, 2795-2807. https://doi.org/10.1128/MCB.25.7.2795-2807.2005
  33. Ezeriņa, D., Morgan, B., and Dick, T.P. (2014). Imaging dynamic redox processes with genetically encoded probes. J. Mol. Cell. Cardiol. 73, 43-49. https://doi.org/10.1016/j.yjmcc.2013.12.023
  34. Fan, Y., Hida, A., Anderson, D. a., Izumo, M., and Johnson, C.H. (2007). Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts. Curr. Biol. 17, 1091-1100. https://doi.org/10.1016/j.cub.2007.05.048
  35. Feillet, C., Krusche, P., Tamanini, F., Janssens, R.C., Downey, M.J., Martin, P., Teboul, M., Saito, S., Levi, F. a., Bretschneider, T., et al. (2014). Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc. Natl. Acad. Sci. USA 111, 9828-9833. https://doi.org/10.1073/pnas.1320474111
  36. Fogg, P.C.M., O'Neill, J.S., Dobrzycki, T., Calvert, S., Lord, E.C., McIntosh, R.L.L., Elliott, C.J.H., Sweeney, S.T., Hastings, M.H., and Chawla, S. (2014). Class IIa histone deacetylases are conserved regulators of circadian function. J. Biol. Chem. 289, 34341-34348. https://doi.org/10.1074/jbc.M114.606392
  37. Fourquet, S., Huang, M.E., D'Autreaux, B., and Toledano, M.B. (2008). The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling. Antioxid. Redox Signal. 10, 1565-1576. https://doi.org/10.1089/ars.2008.2049
  38. Fujimoto, Y., Yagita, K., and Okamura, H. (2006). Does mPER2 protein oscillate without its coding mRNA cycling?: posttranscriptional regulation by cell clock. Genes Cells 11, 525-530. https://doi.org/10.1111/j.1365-2443.2006.00960.x
  39. Gibbs, J., Ince, L., Matthews, L., Mei, J., Bell, T., Yang, N., Saer, B., Begley, N., Poolman, T., Pariollaud, M., et al. (2014). An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat. Med. 20, 919-926. https://doi.org/10.1038/nm.3599
  40. Godinho, S.I.H., Maywood, E.S., Shaw, L., Tucci, V., Barnard, A.R., Busino, L., Pagano, M., Kendall, R., Quwailid, M.M., Romero, M.R., et al. (2007). The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316, 897-900. https://doi.org/10.1126/science.1141138
  41. Goldman, R., Stoyanovsky, D. a, Day, B.W., and Kagan, V.E. (1995). Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin. Biochemistry 34, 4765-4772. https://doi.org/10.1021/bi00014a034
  42. Gorrini, C., Harris, I.S., and Mak, T.W. (2013). Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931-947. https://doi.org/10.1038/nrd4002
  43. Grek, C.L., Zhang, J., Manevich, Y., Townsend, D.M., and Tew, K.D. (2013). Causes and consequences of cysteine Sglutathionylation. J. Biol. Chem. 288, 26497-26504. https://doi.org/10.1074/jbc.R113.461368
  44. Gyongyosi, N., Nagy, D., Makara, K., Ella, K., and Kaldi, K. (2013). Reactive oxygen species can modulate circadian phase and period in Neurospora crassa. Free Radic. Biol. Med. 58, 134-143. https://doi.org/10.1016/j.freeradbiomed.2012.12.016
  45. Hanschmann, E.-M., Godoy, J.R., Berndt, C., Hudemann, C., and Lillig, C.H. (2013). Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance:from cofactors to antioxidants to redox signaling. Antioxid. Redox Signal. 19, 1539-1605. https://doi.org/10.1089/ars.2012.4599
  46. Hardin, P.E., Hall, J.C., and Rosbash, M. (1990). Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536-540. https://doi.org/10.1038/343536a0
  47. Hastings, M.H., Maywood, E.S., and O'Neill, J.S. (2008). Cellular circadian pacemaking and the role of cytosolic rhythms. Curr. Biol. 18, R805-R815. https://doi.org/10.1016/j.cub.2008.07.021
  48. Hayes, J.D., and Dinkova-Kostova, A.T. (2014). The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199-218. https://doi.org/10.1016/j.tibs.2014.02.002
  49. Homma, T., Okano, S., Lee, J., Ito, J., Otsuki, N., Kurahashi, T., Kang, E.S., Nakajima, O., and Fujii, J. (2015). SOD1 deficiency induces the systemic hyperoxidation of peroxiredoxin in the mouse. Biochem. Biophys. Res. Commun. 463, 1040-1046. https://doi.org/10.1016/j.bbrc.2015.06.055
  50. Horst, G.T.J. Van Der, and Muijtjens, M. (1999). Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. 3495, 627-630.
  51. Van der Horst, A., Tertoolen, L.G.J., de Vries-Smits, L.M.M., Frye, R. a, Medema, R.H., and Burgering, B.M.T. (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J. Biol. Chem. 279, 28873-28879. https://doi.org/10.1074/jbc.M401138200
  52. Hoyle, N.P., and O'Neill, J.S. (2014). Oxidation-reduction cycles of peroxiredoxin proteins and nontranscriptional aspects of timekeeping. Biochemistry 54, 184-193.
  53. Jacobi, D., Liu, S., Burkewitz, K., Kory, N., Knudsen, N.H., Alexander, R.K., Unluturk, U., Li, X., Kong, X., Hyde, A.L., et al. (2015). Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab. 22, 709-720. https://doi.org/10.1016/j.cmet.2015.08.006
  54. Jang, C., Lahens, N.F., Hogenesch, J.B., and Sehgal, A. (2015). Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res. 25, 1836-1847. https://doi.org/10.1101/gr.191296.115
  55. Jarvis, R.M., Hughes, S.M., and Ledgerwood, E.C. (2012). Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 53, 1522-1530. https://doi.org/10.1016/j.freeradbiomed.2012.08.001
  56. Kaasik, K., Kivimae, S., Allen, J.J.J., Chalkley, R.J.J., Huang, Y., Baer, K., Kissel, H., Burlingame, A.L.L., Shokat, K.M.M., Ptacek, L.J.J., et al. (2013). Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab. 17, 291-302. https://doi.org/10.1016/j.cmet.2012.12.017
  57. De Keizer, P.L.J., Burgering, B.M.T., and Dansen, T.B. (2011). Forkhead box o as a sensor, mediator, and regulator of redox signaling. Antioxid. Redox Signal. 14, 1093-1106. https://doi.org/10.1089/ars.2010.3403
  58. Kil, I.S., Lee, S.K., Ryu, K.W., Woo, H.A., Hu, M.C., Bae, S.H., and Rhee, S.G. (2012). Feedback Control of Adrenal Steroidogenesis via H2O2-Dependent, Reversible Inactivation of Peroxiredoxin III in Mitochondria. Mol. Cell 46, 584-594. https://doi.org/10.1016/j.molcel.2012.05.030
  59. Kil, I.S., Ryu, K.W., Lee, S.K., Kim, J.Y., Chu, S.Y., Kim, J.H., Park, S., and Rhee, S.G. (2015). Circadian Oscillation of Sulfiredoxin in the Mitochondria. Mol. Cell 59, 651-663. https://doi.org/10.1016/j.molcel.2015.06.031
  60. Ko, C.H., Yamada, Y.R., Welsh, D.K., Buhr, E.D., Liu, A.C., Zhang, E.E., Ralph, M.R., Kay, S. a, Forger, D.B., and Takahashi, J.S. (2010). Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol. 8, e1000513. https://doi.org/10.1371/journal.pbio.1000513
  61. Kondratov, R. V., Kondratova, A. a., Gorbacheva, V.Y., Vykhovanets, O. V., and Antoch, M.P. (2006). Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 20, 1868-1873. https://doi.org/10.1101/gad.1432206
  62. Kondratov, R. V., Vykhovanets, O., Kondratova, A. a., and Antoch, M.P. (2009). Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1. Aging 1, 979-987. https://doi.org/10.18632/aging.100113
  63. Kruiswijk, F., Labuschagne, C.F., and Vousden, K.H. (2015). p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393-405. https://doi.org/10.1038/nrm4007
  64. Kulathu, Y., Garcia, F.J., Mevissen, T.E.T., Busch, M., Arnaudo, N., Carroll, K.S., Barford, D., and Komander, D. (2013). Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat. Commun. 4, 1569. https://doi.org/10.1038/ncomms2567
  65. Lamia, K. a, Sachdeva, U.M., DiTacchio, L., Williams, E.C., Alvarez, J.G., Egan, D.F., Vasquez, D.S., Juguilon, H., Panda, S., Shaw, R.J., et al. (2009). AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437-440. https://doi.org/10.1126/science.1172156
  66. Langner, R., and Rensing, L. (1972). Circadian rhythm of oxygen consumption in rat liver suspension culture: changes of pattern. Z. Naturforsch. B. 27, 1117-1118.
  67. Lee, S.-R., Kwon, K.S., Kim, S.R., and Rhee, S.G. (1998). Reversible Inactivation of Protein-tyrosine Phosphatase 1B in A431 Cells Stimulated with Epidermal Growth Factor. J. Biol. Chem. 273, 15366-15372. https://doi.org/10.1074/jbc.273.25.15366
  68. Lee, C., Etchegaray, J.P., Cagampang, F.R., Loudon, a S., and Reppert, S.M. (2001). Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855-867. https://doi.org/10.1016/S0092-8674(01)00610-9
  69. Lee, J., Moulik, M., Fang, Z., Saha, P., Zou, F., Xu, Y., Nelson, D.L., Ma, K., Moore, D.D., and Yechoor, V.K. (2013a). Bmal1 and ${\beta}$-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced ${\beta}$-cell failure in mice. Mol. Cell. Biol. 33, 2327-2338. https://doi.org/10.1128/MCB.01421-12
  70. Lee, J.-G., Baek, K., Soetandyo, N., and Ye, Y. (2013b). Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat. Commun. 4, 1568. https://doi.org/10.1038/ncomms2532
  71. Leise, T.L., Wang, C.W., Gitis, P.J., and Welsh, D.K. (2012). Persistent cell-autonomous circadian oscillations in fibroblasts revealed by six-week single-cell imaging of PER2::LUC bioluminescence. PLoS One 7, e33334. https://doi.org/10.1371/journal.pone.0033334
  72. Lipton, J.O., Yuan, E.D., Boyle, L.M., Ebrahimi-Fakhari, D., Kwiatkowski, E., Nathan, A., Güttler, T., Davis, F., Asara, J.M., and Sahin, M. (2015). The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell 161, 1138-1151. https://doi.org/10.1016/j.cell.2015.04.002
  73. Lowrey, P.L., Shimomura, K., Antoch, M.P., Yamazaki, S., Zemenides, P.D., Ralph, M.R., Menaker, M., and Takahashi, J.S. (2000). Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483-492. https://doi.org/10.1126/science.288.5465.483
  74. Maier, B., Wendt, S., Vanselow, J.T., Wallach, T., Reischl, S., Oehmke, S., Schlosser, A., and Kramer, A. (2009). A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev. 23, 708-718. https://doi.org/10.1101/gad.512209
  75. Maiorino, M., Roveri, A., Benazzi, L., Bosello, V., Mauri, P., Toppo, S., Tosatto, S.C.E., and Ursini, F. (2005). Functional interaction of phospholipid hydroperoxide glutathione peroxidase with sperm mitochondrion-associated cysteine-rich protein discloses the adjacent cysteine motif as a new substrate of the selenoperoxidase. J. Biol. Chem. 280, 38395-38402. https://doi.org/10.1074/jbc.M505983200
  76. Masri, S., Rigor, P., Cervantes, M., Ceglia, N., Sebastian, C., Xiao, C., Roqueta-Rivera, M., Deng, C., Osborne, T.F., Mostoslavsky, R., et al. (2014). Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158, 659-672. https://doi.org/10.1016/j.cell.2014.06.050
  77. Matsuo, T., Yamaguchi, S., Mitsui, S., Emi, A., Shimoda, F., and Okamura, H. (2003). Control mechanism of the circadian clock for timing of cell division in vivo. Science 302, 255-259. https://doi.org/10.1126/science.1086271
  78. Mauvoisin, D., Wang, J., Jouffe, C., Martin, E., Atger, F., Waridel, P., Quadroni, M., Gachon, F., and Naef, F. (2014). Circadian clockdependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc. Natl. Acad. Sci. USA 111, 167-172. https://doi.org/10.1073/pnas.1314066111
  79. Maywood, E.S., Chesham, J.E., Brien, J.A.O., and Hastings, M.H. (2011). A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc. Natl. Acad. Sci. USA 108, 14306-14311. https://doi.org/10.1073/pnas.1101767108
  80. McCord, J.M., and Fridovich, I. (1969). Superoxide dismutase: and enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049-6055.
  81. Meng, Q.-J., Logunova, L., Maywood, E.S., Gallego, M., Lebiecki, J., Brown, T.M., Sladek, M., Semikhodskii, A.S., Glossop, N.R.J., Piggins, H.D., et al. (2008). Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58, 78-88. https://doi.org/10.1016/j.neuron.2008.01.019
  82. Mitsuishi, Y., Taguchi, K., Kawatani, Y., Shibata, T., Nukiwa, T., Aburatani, H., Yamamoto, M., and Motohashi, H. (2012). Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22, 66-79. https://doi.org/10.1016/j.ccr.2012.05.016
  83. Mohawk, J. a., Green, C.B., and Takahashi, J.S. (2012). Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445-462. https://doi.org/10.1146/annurev-neuro-060909-153128
  84. Monteiro, H.P., and Stern, A. (1996). Redox modulation of tyrosine phosphorylation-dependent signal transduction pathways. Free Radic. Biol. Med. 21, 323-333. https://doi.org/10.1016/0891-5849(96)00051-2
  85. Musiek, E.S. (2015). Circadian clock disruption in neurodegenerative diseases: cause and effect? Front. Pharmacol. 6, 29.
  86. Musiek, E.S., Lim, M.M., Yang, G., Bauer, A.Q., Qi, L., Lee, Y., Roh, J.H., Ortiz-gonzalez, X., Dearborn, J.T., Culver, J.P., et al. (2013). Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J. Clin. Invest. 123, 5389-5400. https://doi.org/10.1172/JCI70317
  87. Nadeau, P.J., Charette, S.J., Toledano, M.B., and Landry, J. (2007). Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol. Biol. Cell 18, 3903-3913. https://doi.org/10.1091/mbc.E07-05-0491
  88. Nagy, P., Karton, A., Betz, A., Peskin, A.V, Pace, P., O'Reilly, R.J., Hampton, M.B., Radom, L., and Winterbourn, C.C. (2011). Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study. J. Biol. Chem. 286, 18048-18055. https://doi.org/10.1074/jbc.M111.232355
  89. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M., and Sassone-Corsi, P. (2009). Circadian control of the $NAD^+$ salvage pathway by CLOCK-SIRT1. Science 324, 654-657. https://doi.org/10.1126/science.1170803
  90. Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y., Iwasaki, H., Oyama, T., and Kondo, T. (2005). Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414-415. https://doi.org/10.1126/science.1108451
  91. Nangle, S.N., Rosensweig, C., Koike, N., Tei, H., Takahashi, J.S., Green, C.B., and Zheng, N. (2014). Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. Elife 15, e30674.
  92. O'Neill, J.S., and Reddy, A.B. (2011). Circadian clocks in human red blood cells. Nature 469, 498-503. https://doi.org/10.1038/nature09702
  93. O'Neill, J.S., and Reddy, A.B. (2012). The essential role of cAMP / $Ca^{2+}$ signalling in mammalian circadian timekeeping. Biochem. Soc. Trans. 40, 44-50. https://doi.org/10.1042/BST20110691
  94. O'Neill, J.S., Maywood, E.S., Chesham, J.E., Takahashi, J.S., and Hastings, M.H. (2008). cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320, 949-953. https://doi.org/10.1126/science.1152506
  95. O'Neill, J.S., Ooijen, G. Van, Dixon, L.E., Troein, C., Corellou, F., Bouget, F.-Y., Reddy, A.B., Millar, A.J., and van Ooijen, G. (2011). Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554-558. https://doi.org/10.1038/nature09654
  96. O'Neill, J.S., Maywood, E.S., and Hastings, M.H. (2013). Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb. Exp. Pharmacol. 2013, 67-103.
  97. Okano, S., Akashi, M., Hayasaka, K., and Nakajima, O. (2009). Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice. Neurosci. Lett. 451, 246-251. https://doi.org/10.1016/j.neulet.2009.01.014
  98. Ono, D., Honma, S., and Honma, K. (2013). Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Nat. Commun. 4, 1666. https://doi.org/10.1038/ncomms2670
  99. Papp, S.J., Huber, A.-L., Jordan, S.D., Kriebs, A., Nguyen, M., Moresco, J.J., Yates, J.R., and Lamia, K.A. (2015). DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. Elife 4, doi: 10.7554/eLife.04883.
  100. Paulose, J.K., Rucker, E.B., and Cassone, V.M. (2012). Toward the beginning of time: circadian rhythms in metabolism precede rhythms in clock gene expression in mouse embryonic stem cells. PLoS One 7, e49555. https://doi.org/10.1371/journal.pone.0049555
  101. Peek, C.B., Affinati, A.H., Ramsey, K.M., Kuo, H.-Y., Yu, W., Sena, L. a, Ilkayeva, O., Marcheva, B., Kobayashi, Y., Omura, C., et al. (2013). Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342, 1243417. https://doi.org/10.1126/science.1243417
  102. Pekovic-Vaughan, V., Gibbs, J., Yoshitane, H., Yang, N., Pathiranage, D., Guo, B., Sagami, A., Taguchi, K., Bechtold, D., Loudon, A., et al. (2014). The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis. Genes Dev. 28, 548-560. https://doi.org/10.1101/gad.237081.113
  103. Peralta, D., Bronowska, A.K., Morgan, B., Doka, E., Van Laer, K., Nagy, P., Grater, F., and Dick, T.P. (2015). A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156-163. https://doi.org/10.1038/nchembio.1720
  104. Peskin, A.V., Low, F.M., Paton, L.N., Maghzal, G.J., Hampton, M.B., and Winterbourn, C.C. (2007). The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282, 11885-11892. https://doi.org/10.1074/jbc.M700339200
  105. Pittendrigh, C.S. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harb. Symp. Quant. Biol. 25, 159-184. https://doi.org/10.1101/SQB.1960.025.01.015
  106. Pizarro, A., Hayer, K., Lahens, N.F., and Hogenesch, J.B. (2013). CircaDB: A database of mammalian circadian gene expression profiles. Nucleic Acids Res. 41, D1009-1013. https://doi.org/10.1093/nar/gks1161
  107. Prysyazhna, O., Rudyk, O., and Eaton, P. (2012). Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension. Nat. Med. 18, 286-290. https://doi.org/10.1038/nm.2603
  108. Putker, M., Madl, T., Vos, H.R.R., de Ruiter, H., Visscher, M., van den Berg, M.C.W., Kaplan, M., Korswagen, H.C.C., Boelens, R., Vermeulen, M., et al. (2013). Redox-dependent control of FOXO/DAF-16 by transportin-1. Mol. Cell 49, 730-742. https://doi.org/10.1016/j.molcel.2012.12.014
  109. Putker, M., Vos, H.R., and Dansen, T.B. (2014a). Intermolecular disulfide-dependent redox signalling. Biochem. Soc. Trans. 42, 971-978. https://doi.org/10.1042/BST20140097
  110. Putker, M., Vos, H., van Dorenmalen, K., de Ruiter, H., Duran, A.G., Snel, B., Burgering, B.M., Vermeulen, M., and Dansen, T.B. (2014b). Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling. Antioxid. Redox Signal. 22, 15-28.
  111. Radha, B.E., Hill, T.D., Rao, G.H.R., and White, J.G. (1985). GSH levels in human platelets display a circadian rythm in vitro. Trombos. Res. 40, 823-831. https://doi.org/10.1016/0049-3848(85)90319-6
  112. Raghuram, S., Stayrook, K.R., Huang, P., Rogers, P.M., Nosie, A.K., McClure, D.B., Burris, L.L., Khorasanizadeh, S., Burris, T.P., and Rastinejad, F. (2007). Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat. Struct. Mol. Biol. 14, 1207-1213. https://doi.org/10.1038/nsmb1344
  113. Rainwater, R., Parks, D., Anderson, M.E., Tegtmeyer, P., and Mann, K. (1995). Role of cysteine residues in regulation of p53 function. Mol. Cell. Biol. 15, 3892-3903. https://doi.org/10.1128/MCB.15.7.3892
  114. Ramsey, K.M., Yoshino, J., Brace, S.C., Abrassart, D., Kobayashi, Y., Mercheva, B., Hong, H.-K., Chong, J.L., Buhr, E.D., Lee, C., et al. (2009). Circadian clock feedback cycle through NAMPTmediated $NAD^+$ biosynthesis. Science 324, 651-654. https://doi.org/10.1126/science.1171641
  115. Rehder, D.S., and Borges, C.R. (2010). Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Biochemistry 49, 7748-7755. https://doi.org/10.1021/bi1008694
  116. Reischl, S., Vanselow, K., Westermark, P.O., Thierfelder, N., Maier, B., Herzel, H., and Kramer, A. (2007). Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 22, 375-386. https://doi.org/10.1177/0748730407303926
  117. Reppert, S.M., and Weaver, D.R. (2002). Coordination of circadian timing in mammals. Nature 418, 935-941. https://doi.org/10.1038/nature00965
  118. Ripperger, J.A., and Schibler, U. (2006). Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369-374. https://doi.org/10.1038/ng1738
  119. Robles, M.S., Cox, J., and Mann, M. (2014). In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet. 10, e1004047. https://doi.org/10.1371/journal.pgen.1004047
  120. Roenneberg, T., and Merrow, M. (2002). Life before the clock:modeling circadian evolution. J. Biol. Rhythms 17, 495-505. https://doi.org/10.1177/0748730402238231
  121. Rosbash, M. (2009). The implications of multiple circadian clock origins. PLoS Biol. 7, 0421-0425.
  122. Rutter, J., Reick, M., Wu, L.C., and McKnight, S.L. (2001). Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510-514. https://doi.org/10.1126/science.1060698
  123. Sahar, S., Nin, V., Barbosa, M.T., Chini, E.N., and Sassone-Corsi, P. (2011). Altered behavioral and metabolic circadian rhythms in mice with disrupted $NAD^+$ oscillation. Aging 3, 794-802. https://doi.org/10.18632/aging.100368
  124. Saini, C., Liani, A., Curie, T., Gos, P., Kreppel, F., Emmenegger, Y., Bonacina, L., Wolf, J.-P., Franken, P., and Schibler, U. (2013). Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev. 27, 1526-1536. https://doi.org/10.1101/gad.221374.113
  125. Saini, C., Brown, S.A., and Dibner, C. (2015). Human peripheral clocks: applications for studying circadian phenotypes in physiology and pathophysiology. Front. Neurol. 6, 95.
  126. Sato, T.K., Yamada, R.G., Ukai, H., Baggs, J.E., Miraglia, L.J., Kobayashi, T.J., Welsh, D.K., Kay, S.A, Ueda, H.R., and Hogenesch, J.B. (2006). Feedback repression is required for mammalian circadian clock function. Nat. Genet. 38, 312-319. https://doi.org/10.1038/ng1745
  127. Schieber, M., and Chandel, N.S. (2014). ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453-R462. https://doi.org/10.1016/j.cub.2014.03.034
  128. Schmalen, I., Reischl, S., Wallach, T., Klemz, R., Grudziecki, A., Prabu, J.R., Benda, C., Kramer, A., and Wolf, E. (2014). Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157, 1203-1215. https://doi.org/10.1016/j.cell.2014.03.057
  129. Shao, D., Oka, S., Liu, T., Zhai, P., Ago, T., Sciarretta, S., Li, H., and Sadoshima, J. (2014). A redox-dependent mechanism for regulation of AMPK activation by thioredoxin1 during energy starvation. Cell Metab. 19, 232-245. https://doi.org/10.1016/j.cmet.2013.12.013
  130. Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2014). Peroxiredoxin-2 and STAT3 form a redox relay for $H_2O_2$ signaling. Nat. Chem. Biol. 11, 64-70. https://doi.org/10.1038/nchembio.1695
  131. Storz, G., Tartaglia, L. a, and Ames, B.N. (1990). Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248, 189-194. https://doi.org/10.1126/science.2183352
  132. Stringari, C., Wang, H., Geyfman, M., Crosignani, V., Kumar, V., Takahashi, J.S., Andersen, B., and Gratton, E. (2014). In vivo single-cell detection of metabolic oscillations in stem cells. Cell Rep. 10, 1-7.
  133. Sundaresan, M., Yu, Z.X., Ferrans, V.J., Irani, K., and Finkel, T. (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296-299. https://doi.org/10.1126/science.270.5234.296
  134. Sweeney, B., and Haxo, F. (1961). Persistence of a photosynthetic rhythm in enucleated acetabularia. Science 134, 1361-1363. https://doi.org/10.1126/science.134.3487.1361
  135. Tamaru, T., Hattori, M., Ninomiya, Y., Kawamura, G., Vares, G., Honda, K., Mishra, D.P., Wang, B., Benjamin, I., Sassone-Corsi, P., et al. (2013). ROS stress resets circadian clocks to coordinate pro-survival signals. PLoS One 8, e82006. https://doi.org/10.1371/journal.pone.0082006
  136. Tomita, J., Nakajima, M., Kondo, T., and Iwasaki, H. (2005). No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307, 251-254. https://doi.org/10.1126/science.1102540
  137. Ueda, H.R. (2007). Systems biology of mammalian circadian clocks. Cold Spring Harb. Symp. Quant. Biol. 72, 365-380.
  138. Vassilopoulos, A., Fritz, K.S., Petersen, D.R., and Gius, D. (2011). The human sirtuin family: evolutionary divergences and functions. Hum. Genomics 5, 485-496. https://doi.org/10.1186/1479-7364-5-5-485
  139. Vaziri, H., Dessain, S.K., Ng Eaton, E., Imai, S.I., Frye, R. a, Pandita, T.K., Guarente, L., and Weinberg, R.A. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159. https://doi.org/10.1016/S0092-8674(01)00527-X
  140. Wang, T.A., and Gillette, M.U. (2012). Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 337, 839-842. https://doi.org/10.1126/science.1222826
  141. Webster, K.A., Prentice, H., and Bishopric, N.H. (2001). Oxidation of zinc finger transcription factors: physiological consequences. Antioxid. Redox Signal. 3, 535-548. https://doi.org/10.1089/15230860152542916
  142. Welsh, D.K., Yoo, S.-H., Liu, A.C., Takahashi, J.S., and Kay, S.A. (2004). Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 14, 2289-2295. https://doi.org/10.1016/j.cub.2004.11.057
  143. Welsh, D.K., Takahashi, J.S., and Kay, S.A. (2010). Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72, 551-577. https://doi.org/10.1146/annurev-physiol-021909-135919
  144. Winterbourn, C.C., and Metodiewa, D. (1999). Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27, 322-328. https://doi.org/10.1016/S0891-5849(99)00051-9
  145. Winterbourn, C.C., and Hampton, M.B. (2008). Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549-561. https://doi.org/10.1016/j.freeradbiomed.2008.05.004
  146. Woo, H.A., Chae, H.Z., Hwang, S.C., Yang, K.-S., Kang, S.W., Kim, K., and Rhee, S.G. (2003). Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300, 653-656. https://doi.org/10.1126/science.1080273
  147. Woo, H.A., Yim, S.H., Shin, D.H., Kang, D., Yu, D.-Y., and Rhee, S.G. (2010). Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140, 517-528. https://doi.org/10.1016/j.cell.2010.01.009
  148. Wood, Z.A, Poole, L.B., and Karplus, P.A. (2003). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653. https://doi.org/10.1126/science.1080405
  149. Wu, X., Bishopric, N.H., Discher, D.J., Murphy, B.J., Webster, K.A., Wu, X., Bishopric, N.H., Discher, D.J., Murphy, B.J., and Webster, K.A. (1996). Physical and functional sensitivity of zinc finger transcription factors to redox change. Mol. Cell. Biol. 16, 1035-1046. https://doi.org/10.1128/MCB.16.3.1035
  150. Xu, Y.-Q., Zhang, D., Jin, T., Cai, D.-J., Wu, Q., Lu, Y., Liu, J., and Klaassen, C.D. (2012). Diurnal variation of hepatic antioxidant gene expression in mice. PLoS One 7, e44237. https://doi.org/10.1371/journal.pone.0044237
  151. Yang, G., Wright, C.J., Hinson, M.D., Fernando, A.P., Sengupta, S., Biswas, C., La, P., and Dennery, P.A. (2014). Oxidative stress and inflammation modulate Rev-$erb{\alpha}$ signaling in the neonatal lung and affect circadian rhythmicity. Antioxid. Redox Signal. 21, 17-32. https://doi.org/10.1089/ars.2013.5539
  152. Yoo, S.-H., Yamazaki, S., Lowrey, P.L., Shimomura, K., Ko, C.H., Buhr, E.D., Siepka, S.M., Hong, H.-K., Oh, W.J., Yoo, O.J., et al. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 101, 5339-5346. https://doi.org/10.1073/pnas.0308709101
  153. Yoshida, Y., Iigusa, H., Wang, N., and Hasunuma, K. (2011). Crosstalk between the cellular redox state and the circadian system in Neurospora. PLoS One 6, e28227. https://doi.org/10.1371/journal.pone.0028227
  154. Yoshii, K., Tajima, F., Ishijima, S., and Sagami, I. (2015). Changes in pH and NADPH regulate the DNA binding activity of neuronal PAS domain protein 2, a mammalian circadian transcription factor. Biochemistry 54, 250-259. https://doi.org/10.1021/bi5008518
  155. Zhang, Q., Piston, D.W., and Goodman, R.H. (2002). Regulation of corepressor function by nuclear {NADH}. Science 295, 1895-1897.
  156. Zhang, E.E., Liu, Y., Dentin, R., Pongsawakul, P.Y., Liu, A.C., Hirota, T., Nusinow, D.A., Sun, X., Landais, S., Kodama, Y., et al. (2010). Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 16, 1152-1156. https://doi.org/10.1038/nm.2214
  157. Zhang, R., Lahens, N.F., Ballance, H.I., Hughes, M.E., and Hogenesch, J.B. (2014). A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl. Acad. Sci. USA 111, 16219-16224. https://doi.org/10.1073/pnas.1408886111
  158. Zhou, M., Wang, W., Karapetyan, S., Mwimba, M., Marques, J., Buchler, N.E., and Dong, X. (2015). Redox rhythm reinforces the circadian clock to gate immune response. Nature 523, 472-476. https://doi.org/10.1038/nature14449

Cited by

  1. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress vol.11, 2017, https://doi.org/10.1016/j.redox.2016.12.035
  2. Immunometabolism: Is it under the eye of the clock? vol.28, pp.5, 2016, https://doi.org/10.1016/j.smim.2016.10.006
  3. Mammalian Circadian Period, But Not Phase and Amplitude, Is Robust Against Redox and Metabolic Perturbations 2018, https://doi.org/10.1089/ars.2016.6911
  4. Stem cells and the circadian clock 2017, https://doi.org/10.1016/j.ydbio.2017.09.012
  5. The genomic landscape of human cellular circadian variation points to a novel role for the signalosome vol.6, 2017, https://doi.org/10.7554/eLife.24994
  6. Multiple Functions and Regulation of Mammalian Peroxiredoxins vol.86, pp.1, 2017, https://doi.org/10.1146/annurev-biochem-060815-014431
  7. Overview on Peroxiredoxin vol.39, pp.1, 2016, https://doi.org/10.14348/molcells.2016.2368
  8. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression vol.27, pp.7-8, 2016, https://doi.org/10.1007/s00335-016-9643-x
  9. The molecular basis of metabolic cycles and their relationship to circadian rhythms vol.23, pp.12, 2016, https://doi.org/10.1038/nsmb.3311
  10. biology’s ignored component? vol.242, pp.17, 2017, https://doi.org/10.1177/1535370217732766
  11. Circadian rhythms, metabolic oscillators, and the target of rapamycin (TOR) pathway: the Neurospora connection pp.1432-0983, 2019, https://doi.org/10.1007/s00294-018-0897-6
  12. NRF2 regulates core and stabilizing circadian clock loops, coupling redox and timekeeping in Mus musculus vol.7, pp.2050-084X, 2018, https://doi.org/10.7554/eLife.31656
  13. Nuclear magnetic resonance affects the circadian clock and hypoxia-inducible factor isoforms in zebrafish pp.1744-4179, 2018, https://doi.org/10.1080/09291016.2018.1498194
  14. Hypoxia-inducible transcription factors in fish: expression, function and interconnection with the circadian clock vol.221, pp.13, 2018, https://doi.org/10.1242/jeb.163709
  15. Rhythmic potassium transport regulates the circadian clock in human red blood cells vol.8, pp.1, 2016, https://doi.org/10.1038/s41467-017-02161-4
  16. Metabolic Plasticity Enables Circadian Adaptation to Acute Hypoxia in Zebrafish Cells vol.46, pp.3, 2016, https://doi.org/10.1159/000489058
  17. Non-transcriptional processes in circadian rhythm generation vol.5, pp.None, 2018, https://doi.org/10.1016/j.cophys.2018.10.003
  18. Circadian control of stress granules by oscillating EIF2α vol.10, pp.3, 2016, https://doi.org/10.1038/s41419-019-1471-y
  19. The Mammalian Circadian Timing System and the Suprachiasmatic Nucleus as Its Pacemaker vol.8, pp.1, 2016, https://doi.org/10.3390/biology8010013
  20. Evolution Shapes the Gene Expression Response to Oxidative Stress vol.20, pp.12, 2016, https://doi.org/10.3390/ijms20123040
  21. Effects of diet α-ketoglutarate (AKG) supplementation on the growth performance, antioxidant defense system, intestinal digestive enzymes, and immune response of grass carp (Ctenopharyngodon ide vol.28, pp.2, 2016, https://doi.org/10.1007/s10499-019-00475-2
  22. Hypoxia acclimation alters reactive oxygen species homeostasis and oxidative status in estuarine killifish (Fundulus heteroclitus) vol.223, pp.13, 2016, https://doi.org/10.1242/jeb.222877
  23. A novel peroxiredoxin from the antagonistic endophytic bacterium Enterobacter sp. V1 contributes to cotton resistance against Verticillium dahliae vol.454, pp.1, 2016, https://doi.org/10.1007/s11104-020-04661-7
  24. Environmental Factors Such as Noise and Air Pollution and Vascular Disease vol.33, pp.9, 2016, https://doi.org/10.1089/ars.2020.8090
  25. Critical period regulation across multiple timescales vol.117, pp.38, 2016, https://doi.org/10.1073/pnas.1820836117
  26. Improved redox anti-cancer treatment efficacy through reactive species rhythm manipulation vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-58579-2
  27. Influence of mental stress and environmental toxins on circadian clocks: Implications for redox regulation of the heart and cardioprotection vol.177, pp.23, 2016, https://doi.org/10.1111/bph.14949
  28. Circadian zinc feeding regime in laying hens related to laying performance, oxidation status, and interaction of zinc and calcium vol.99, pp.12, 2020, https://doi.org/10.1016/j.psj.2020.06.086
  29. Widely rhythmic transcriptome in Calanus finmarchicus during the high Arctic summer solstice period vol.24, pp.1, 2016, https://doi.org/10.1016/j.isci.2020.101927
  30. Molecular regulation of brain metabolism underlying circadian epilepsy vol.62, pp.suppl, 2021, https://doi.org/10.1111/epi.16796
  31. Redox Switches in Noise-Induced Cardiovascular and Neuronal Dysregulation vol.8, pp.None, 2021, https://doi.org/10.3389/fmolb.2021.784910
  32. CRYPTOCHROMES confer robustness, not rhythmicity, to circadian timekeeping vol.40, pp.7, 2021, https://doi.org/10.15252/embj.2020106745
  33. Circadian Biology and Stroke vol.52, pp.6, 2021, https://doi.org/10.1161/strokeaha.120.031742
  34. Protocol for determining protein cysteine thiol redox status using western blot analysis vol.2, pp.2, 2016, https://doi.org/10.1016/j.xpro.2021.100566
  35. Transportation noise pollution and cardiovascular disease vol.18, pp.9, 2016, https://doi.org/10.1038/s41569-021-00532-5
  36. CBC‐Clock Theory of Life – Integration of cellular circadian clocks and cellular sentience is essential for cognitive basis of life vol.43, pp.10, 2016, https://doi.org/10.1002/bies.202100121