References
- Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980-984. https://doi.org/10.1038/nature02075
- Causton, H.C., Feeney, K.A., Ziegler, C.A., and O'Neill, J.S. (2015). Metabolic cycles in yeast share features conserved among circadian rhythms. Curr. Biol. 25, 1056-1062. https://doi.org/10.1016/j.cub.2015.02.035
- Chae, H.Z., Chung, S.J., and Rhee, S.G. (1994a). Thioredoxindependent peroxide reductase from yeast. J. Biol. Chem. 269, 27670-27678.
- Chae, H.Z., Robison, K., Poole, L.B., Church, G., Storz, G., and Rhee, S.G. (1994b). Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 91, 7017-7021. https://doi.org/10.1073/pnas.91.15.7017
- Cox, A.G., Pullar, J.M., Hughes, G., Ledgerwood, E.C., and Hampton, M.B. (2008). Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis. Free Rad. Biol. Med. 44, 1001-1009. https://doi.org/10.1016/j.freeradbiomed.2007.11.017
- Diet, A., Abbas, K., Bouton, C., Guillon, B., Tomasello, F., Fourquet, S., Toledano, M.B., and Drapier, J.C. (2007). Regulation of peroxiredoxins by nitric oxide in immunostimulated macrophages. J. Biol. Chem. 282, 36199-36205. https://doi.org/10.1074/jbc.M706420200
- Dietz, K.J. (2016). Thiol-based peroxidases and ascorbate peroxidases:why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol. Cells 39, 20-25. https://doi.org/10.14348/molcells.2016.2324
- Edgar, R.S., Green, E.W., Zhao, Y., van Ooijen, G., Olmedo, M., Qin, X., Xu, Y., Pan, M., Valekunja, U.K., Feeney, K.A., et al. (2012). Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459-464. https://doi.org/10.1038/nature11088
- Fisher, A.B. (2011). Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A(2) activities. Antioxid. Redox Signal. 15, 831-844. https://doi.org/10.1089/ars.2010.3412
- Furuta, T., Imajo-Ohmi, S., Fukuda, H., Kano, S., Miyake, K., and Watanabe, N. (2008). Mast cell-mediated immune responses through IgE antibody and Toll-like receptor 4 by malarial peroxiredoxin. Eur. J. Immunol. 38, 1341-1350. https://doi.org/10.1002/eji.200738059
- Gretes, M.C., Poole, L.B., and Karplus, P.A. (2012). Peroxiredoxins in parasites. Antioxid. Redox Signal. 17, 608-633. https://doi.org/10.1089/ars.2011.4404
- Hall, A., Nelson, K., Poole, L.B., and Karplus, P.A. (2011). Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15, 795-815. https://doi.org/10.1089/ars.2010.3624
- Hampton, M.B., and O'Connor, K.M. (2016). Peroxiredoxins and the regulation of cell death. Mol. Cells 39, 72-76. https://doi.org/10.14348/molcells.2016.2351
- Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., et al. (2004). Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635. https://doi.org/10.1016/j.cell.2004.05.002
-
Kil, I.S., Lee, S.K., Ryu, K.W., Woo, H.A., Hu, M.C., Bae, S.H., and Rhee, S.G. (2012). Feedback control of adrenal steroidogenesis via
$H_2O_2$ -dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46, 584-594. https://doi.org/10.1016/j.molcel.2012.05.030 - Kil, I.S., Ryu, K. W., Lee, S.Y., Kim, Y. Y., Chu, S. Y., Kim, J. H., Park, S., Rhee, S. G. (2015). Circadian Oscillation of Sulfiredoxin in the Mitochondria. Mol. Cell 59, 1-13. https://doi.org/10.1016/j.molcel.2015.06.019
- Kim, K., Kim, I.H., Lee, K.Y., Rhee, S.G., and Stadtman, E.R. (1988). The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixedfunction oxidation system. J. Biol. Chem. 263, 4704-4711.
- Kim, I.H., Kim, K., and Rhee, S.G. (1989). Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol. Proc. Natl. Acad. Sci. USA 86, 6018-6022. https://doi.org/10.1073/pnas.86.16.6018
- Knoops, B., Goemaere, J., Van der Eecken, V., and Declercq, J.P. (2011). Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid. Redox Signal. 15, 817-829. https://doi.org/10.1089/ars.2010.3584
- Knoops, B., Argyropoulou, V., Becker, S., and Ferte, L., Kuznetsova, O. (2016). Multiple roles of peroxiredoxins in inflammation. Mol. Cells 39, 60-64 https://doi.org/10.14348/molcells.2016.2341
- Kwon, J., Lee, S.R., Yang, K.S., Ahn, Y., Kim, Y.J., Stadtman, E.R., and Rhee, S.G. (2004). Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101, 16419-16424. https://doi.org/10.1073/pnas.0407396101
- Latimer, H.R., and Veal, E.A. (2016). Peroxiredoxins in regulation of MAPK signalling pathways; sensors and barriers to signal transduction. Mol. Cells 39, 40-45. https://doi.org/10.14348/molcells.2016.2327
- Lee, S.R., Kwon, K.S., Kim, S.R., and Rhee, S.G. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366-15372. https://doi.org/10.1074/jbc.273.25.15366
- Lim, J.M., Lee, K.S., Woo, H.A., Kang, D., and Rhee, S.G. (2015). Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression. J. Cell Biol. 210, 23-33.
- Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., and Denicola, A. (2009). The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch. Biochem. Biophys. 484, 146-154. https://doi.org/10.1016/j.abb.2008.11.017
-
Moon, J.C., Hah, Y.S., Kim, W.Y., Jung, B.G., Jang, H.H., Lee, J.R., Kim, S.Y., Lee, Y.M., Jeon, M.G., Kim, C.W., et al. (2005). Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to
$H_2O_2$ -induced cell death. J. Biol. Chem. 280, 28775-28784. https://doi.org/10.1074/jbc.M505362200 - Mullen, L., Hanschmann, E.M., Lillig, C.H., Herzenberg, L.A., and Ghezzi, P. (2015). Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion. Mol. Med. 21, 98-108. https://doi.org/10.1007/s00894-015-2638-9
- Nadeau, P.J., Charette, S.J., Toledano, M.B., and Landry, J. (2007). Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol. Biol. Cell 18, 3903-3913. https://doi.org/10.1091/mbc.E07-05-0491
- Nakamura, T., Kado, Y., Yamaguchi, T., Matsumura, H., Ishikawa, K., and Inoue, T. (2010). Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide. J. Biochem. 147, 109-115. https://doi.org/10.1093/jb/mvp154
- Nelson, K.J., Knutson, S.T., Soito, L., Klomsiri, C., Poole, L.B., and Fetrow, J.S. (2011). Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 79, 947-964. https://doi.org/10.1002/prot.22936
- Netto, L.E.S., and Antunes, F. (2016). The roles of peroxiredoxin and thioredoxin in hydrogen reroxide sensing and in signal transduction. Mol. Cells 39, 65-71. https://doi.org/10.14348/molcells.2016.2349
- O'Neill, J.S., and Reddy, A.B. (2011). Circadian clocks in human red blood cells. Nature 469, 498-503. https://doi.org/10.1038/nature09702
- O'Neill, J.S., van Ooijen, G., Dixon, L.E., Troein, C., Corellou, F., Bouget, F.Y., Reddy, A.B., and Millar, A.J. (2011). Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554-558. https://doi.org/10.1038/nature09654
- Olmedo, M., O'Neill, J.S., Edgar, R.S., Valekunja, U.K., Reddy, A.B., and Merrow, M. (2012). Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 109, 20479-20484. https://doi.org/10.1073/pnas.1211705109
- Parsonage, D., Nelson, K.J., Ferrer-Sueta, G., Alley, S., Karplus, P.A., Furdui, C.M., and Poole, L.B. (2015). Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC. Biochemistry 54, 1567-1575. https://doi.org/10.1021/bi501515w
- Perkins, A., Nelson, K.J., Parsonage, D., Poole, L.B., and Karplus, P.A. (2015). Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 40, 435-445. https://doi.org/10.1016/j.tibs.2015.05.001
- Poole, L.B., and Nelson, K.J. (2016). Distribution and features of the six classes of peroxiredoxins. Mol. Cells 39, 53-59. https://doi.org/10.14348/molcells.2016.2330
- Putker, M., and O'Nell, J.H. (2016). Reciprocal control of the circadian clock and cellular redox state - a critical appraisal. Mol. Cells 39, 6-19. https://doi.org/10.14348/molcells.2016.2323
-
Rhee, S.G. (2006). Cell signaling.
$H_2O_2$ , a necessary evil for cell signaling. Science 312, 1882-1883. https://doi.org/10.1126/science.1130481 - Rhee, S.G., Kang, S.W., Chang, T.S., Jeong, W., and Kim, K. (2001). Peroxiredoxin, a novel family of peroxidases. IUBMB life 52, 35-41. https://doi.org/10.1080/15216540252774748
- Rhee, S.G., Chae, H.Z., and Kim, K. (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Rad. Biol. Med. 38, 1543-1552. https://doi.org/10.1016/j.freeradbiomed.2005.02.026
- Rhee, S.G., Woo, H.A., Kil, I.S., and Bae, S.H. (2012). Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 287, 4403-4410. https://doi.org/10.1074/jbc.R111.283432
- Riddell, J.R., Wang, X.Y., Minderman, H., and Gollnick, S.O. (2010). Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4. J. Immunol. 184, 1022-1030. https://doi.org/10.4049/jimmunol.0901945
- Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596-2606. https://doi.org/10.1093/emboj/17.9.2596
- Salzano, S., Checconi, P., Hanschmann, E.M., Lillig, C.H., Bowler, L.D., Chan, P., Vaudry, D., Mengozzi, M., Coppo, L., Sacre, S., et al. (2014). Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc. Natl. Acad. Sci. USA 111, 12157-12162. https://doi.org/10.1073/pnas.1401712111
- Shichita, T., Hasegawa, E., Kimura, A., Morita, R., Sakaguchi, R., Takada, I., Sekiya, T., Ooboshi, H., Kitazono, T., Yanagawa, T., et al. (2012). Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 18, 911-917. https://doi.org/10.1038/nm.2749
-
Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for
$H_2O_2$ signaling. Nat. Chem. Biol. 11, 64-70. https://doi.org/10.1038/nchembio.1695 - Sun, H.N., Kim, S.U., Huang, S.M., Kim, J.M., Park, Y.H., Kim, S.H., Yang, H.Y., Chung, K.J., Lee, T.H., Choi, H.S., et al. (2010). Microglial peroxiredoxin V acts as an inducible anti-inflammatory antioxidant through cooperation with redox signaling cascades. J. Neurochem. 114, 39-50.
- Tartaglia, L.A., Storz, G., Brodsky, M.H., Lai, A., and Ames, B.N. (1990). Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. J. Biol. Chem. 265, 10535-10540.
- Toledano, M.B., and Huang, B. (2016). Microbial 2-Cys Prxs: insights into their complex physiological roles. Mol. Cells 39, 31-39. https://doi.org/10.14348/molcells.2016.2326
- Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J.P., Knoops, B., and Radi, R. (2007). Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem Biophys. 467, 95-106. https://doi.org/10.1016/j.abb.2007.08.008
- Van Laer, K., and Dick, T.P. (2016). Utilizing natural and engineered peroxiredoxins as intracellular peroxide reporters. Mol. Cells 39, 46-52. https://doi.org/10.14348/molcells.2016.2328
-
Vivancos, A.P., Castillo, E.A., Biteau, B., Nicot, C., Ayte, J., Toledano, M.B., and Hidalgo, E. (2005). A cysteine-sulfinic acid in peroxiredoxin regulates
$H_2O_2$ -sensing by the antioxidant Pap1 pathway. Proc. Natl. Acad. Sci. USA 102, 8875-8880. https://doi.org/10.1073/pnas.0503251102 - Winterbourn, C.C. (2013). The biological chemistry of hydrogen peroxide. Methods Enzymol. 528, 3-25. https://doi.org/10.1016/B978-0-12-405881-1.00001-X
- Winterbourn, C.C., Peskin, A.V. (2016). Kinetic approaches to measuring peroxiredoxin reactivity. Mol. Cells 39, 26-30. https://doi.org/10.14348/molcells.2016.2325
- Woo, H.A., Kang, S.W., Kim, H.K., Yang, K.S., Chae, H.Z., and Rhee, S.G. (2003). Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteinecontaining sequence. J. Biol. Chem. 278, 47361-47364. https://doi.org/10.1074/jbc.C300428200
- Woo, H.A., Yim, S.H., Shin, D.H., Kang, D., Yu, D.Y., and Rhee, S.G. (2010). Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140, 517-528. https://doi.org/10.1016/j.cell.2010.01.009
- Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003a). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653. https://doi.org/10.1126/science.1080405
- Wood, Z.A., Schroder, E., Robin Harris, J., and Poole, L.B. (2003b). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
- Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., and Rhee, S.G. (2002). Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem 277, 38029-38036. https://doi.org/10.1074/jbc.M206626200
Cited by
- Discovering Antioxidant Molecules in the Archaea Domain: Peroxiredoxin Bcp1 fromSulfolobus solfataricusProtects H9c2 Cardiomyoblasts from Oxidative Stress vol.2016, 2016, https://doi.org/10.1155/2016/7424870
- The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals vol.51, pp.2, 2017, https://doi.org/10.1080/10715762.2017.1289377
- Mitochondrial peroxiredoxins are essential in regulating the relationship between Drosophila immunity and aging vol.1863, pp.1, 2017, https://doi.org/10.1016/j.bbadis.2016.10.017
- Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane vol.50, pp.12, 2016, https://doi.org/10.1080/10715762.2016.1241995
- NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans vol.8, 2017, https://doi.org/10.3389/fmicb.2017.00516
- The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response vol.91, pp.6, 2017, https://doi.org/10.1111/tpj.13622
- Glutathione, Glutaredoxins, and Iron 2017, https://doi.org/10.1089/ars.2017.7132
- Peroxiredoxins and Redox Signaling in Plants 2017, https://doi.org/10.1089/ars.2017.7164
- Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line vol.6, pp.1, 2016, https://doi.org/10.1038/srep32384
- Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2 vol.292, pp.21, 2017, https://doi.org/10.1074/jbc.M116.767657
- Nrf2-peroxiredoxin I axis in polymorphous adenocarcinoma is associated with low matrix metalloproteinase 2 level 2017, https://doi.org/10.1007/s00428-017-2218-8
- Overexpression of AhpC enhances stress tolerance and N 2 –fixation in Anabaena by upregulating stress responsive genes vol.1860, pp.11, 2016, https://doi.org/10.1016/j.bbagen.2016.07.031
- Analysis of protein profiling studies of β-thalassemia/Hb E disease vol.10, pp.11, 2016, https://doi.org/10.1002/prca.201600086
- Evening and morning peroxiredoxin-2 redox/oligomeric state changes in obstructive sleep apnea red blood cells: Correlation with polysomnographic and metabolic parameters vol.1863, pp.2, 2017, https://doi.org/10.1016/j.bbadis.2016.11.019
- Multiple Functions and Regulation of Mammalian Peroxiredoxins vol.86, pp.1, 2017, https://doi.org/10.1146/annurev-biochem-060815-014431
- Enhanced fermentative performance under stresses of multiple lignocellulose-derived inhibitors by overexpression of a typical 2-Cys peroxiredoxin from Kluyveromyces marxianus vol.10, pp.1, 2017, https://doi.org/10.1186/s13068-017-0766-4
- Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm vol.100, 2016, https://doi.org/10.1016/j.freeradbiomed.2016.10.011
- Mitochondrial H 2 O 2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm vol.99, 2016, https://doi.org/10.1016/j.freeradbiomed.2016.07.029
- Attributes of lipid oxidation due to bovine myoglobin, hemoglobin and hemolysate vol.234, 2017, https://doi.org/10.1016/j.foodchem.2017.04.182
- Biodegradation of alkaline lignin by Bacillus ligniniphilus L1 vol.10, pp.1, 2017, https://doi.org/10.1186/s13068-017-0735-y
- Experimentally Dissecting the Origins of Peroxiredoxin Catalysis 2017, https://doi.org/10.1089/ars.2016.6922
- The Role of Peroxiredoxins in the Transduction of H2O2 Signals 2018, https://doi.org/10.1089/ars.2017.7167
- Peeking under the Iron Curtain: Development of a Microcosm for Imaging the Colonization of Steel Surfaces by Mariprofundus sp. Strain DIS-1, an Oxygen-Tolerant Fe-Oxidizing Bacterium vol.82, pp.22, 2016, https://doi.org/10.1128/AEM.01990-16
- Redox-sensitive alteration of replisome architecture safeguards genome integrity vol.358, pp.6364, 2017, https://doi.org/10.1126/science.aao3172
- Cellular Timekeeping: It’s Redox o’Clock vol.10, pp.5, 2017, https://doi.org/10.1101/cshperspect.a027698
- Histone acetyltransferase KAT8 is essential for mouse oocyte development by regulating reactive oxygen species levels vol.144, pp.12, 2017, https://doi.org/10.1242/dev.149518
- The Effect of Exogenous Peroxiredoxin 6 on the State of Mesenteric Vessels and the Small Intestine in Ischemia–Reperfusion Injury vol.62, pp.6, 2017, https://doi.org/10.1134/S0006350917060239
- Peroxiredoxin I expression in epithelial cells of buccal mucosa from patients exposed to panoramic X-rays: influence of the age vol.22, pp.3, 2018, https://doi.org/10.1007/s00784-017-2254-4
- Differential parameters between cytosolic 2-Cys peroxiredoxins, PRDX1 and PRDX2 pp.09618368, 2018, https://doi.org/10.1002/pro.3520
- Loss of peroxiredoxin-2 exacerbates eccentric contraction-induced force loss in dystrophin-deficient muscle vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-07639-3
- Defenses against Pro-oxidant Forces - Maintenance of Cellular and Genomic Integrity and Longevity vol.190, pp.4, 2018, https://doi.org/10.1667/RR15101.1
- activity of peroxiredoxin 6 vol.59, pp.7, 2018, https://doi.org/10.1194/jlr.R082578
- Nuclear magnetic resonance affects the circadian clock and hypoxia-inducible factor isoforms in zebrafish pp.1744-4179, 2018, https://doi.org/10.1080/09291016.2018.1498194
- Pharmacoproteomics Profiling of Plasma From β-Thalassemia Patients in Response to Hydroxyurea Treatment pp.00912700, 2018, https://doi.org/10.1002/jcph.1297
- Mitochondrial Antioxidants and the Maintenance of Cellular Hydrogen Peroxide Levels vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/7857251
- The Role of Intermolecular Disulfide Bonds in Stabilizing the Structure of Peroxiredoxins vol.63, pp.2, 2018, https://doi.org/10.1134/S0006350918020203
- ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications vol.52, pp.5, 2018, https://doi.org/10.1080/10715762.2018.1457217
- Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/7607463
- Quantitative display of the redox status of proteins with maleimide-polyethylene glycol tagging vol.40, pp.4, 2019, https://doi.org/10.1002/elps.201800335
- -Cyclodextrin in Myeloid Cell Lines vol.2019, pp.1687-4129, 2019, https://doi.org/10.1155/2019/4751827
- Radioprotective Role of Peroxiredoxin 6 vol.8, pp.1, 2019, https://doi.org/10.3390/antiox8010015
- -induced apoptosis after subarachnoid hemorrhage vol.33, pp.2, 2019, https://doi.org/10.1096/fj.201801150R
- signaling vol.33, pp.3, 2019, https://doi.org/10.1096/fj.201800235R
- Signals Getting Crossed in the Entanglement of Redox and Phosphorylation Pathways: Phosphorylation of Peroxiredoxin Proteins Sparks Cell Signaling vol.8, pp.2, 2019, https://doi.org/10.3390/antiox8020029
- Identification of 2-Cys Peroxiredoxin (BmTPx-2) as Antioxidant Active Molecule from Babesia microti vol.8, pp.None, 2016, https://doi.org/10.3389/fmicb.2017.01959
- Saccharomyces cerevisiae TSA1의 보존된 아스파트산 잔기 및 세린 잔기의 변이가 과산화효소 활성 및 샤페론 활성에 미치는 영향 vol.45, pp.1, 2016, https://doi.org/10.4014/mbl.1702.02003
- Peroxiredoxin 1 (Prx1) is a dual-function enzyme by possessing Cys-independent catalase-like activity vol.474, pp.8, 2016, https://doi.org/10.1042/bcj20160851
- Ketamine’s antidepressant effect is mediated by energy metabolism and antioxidant defense system vol.7, pp.None, 2016, https://doi.org/10.1038/s41598-017-16183-x
- Synergistic effect of thioredoxin and its reductase from Kluyveromyces marxianus on enhanced tolerance to multiple lignocellulose-derived inhibitors vol.16, pp.None, 2016, https://doi.org/10.1186/s12934-017-0795-5
- Draft genome sequence of Actinotignum schaalii DSM 15541 T : Genetic insights into the lifestyle, cell fitness and virulence vol.12, pp.12, 2016, https://doi.org/10.1371/journal.pone.0188914
- A functional connection between dyskerin and energy metabolism vol.14, pp.None, 2018, https://doi.org/10.1016/j.redox.2017.11.003
- Peroxiredoxin System of Aspergillus nidulans Resists Inactivation by High Concentration of Hydrogen Peroxide-Mediated Oxidative Stress vol.28, pp.1, 2016, https://doi.org/10.4014/jmb.1707.07024
- Metabolic Plasticity Enables Circadian Adaptation to Acute Hypoxia in Zebrafish Cells vol.46, pp.3, 2016, https://doi.org/10.1159/000489058
- Redoxins as gatekeepers of the transcriptional oxidative stress response vol.21, pp.None, 2016, https://doi.org/10.1016/j.redox.2019.101104
- Circatidal gene expression in the mangrove cricket Apteronemobius asahinai vol.9, pp.None, 2016, https://doi.org/10.1038/s41598-019-40197-2
- Metformin and Aging: A Review vol.65, pp.6, 2016, https://doi.org/10.1159/000502257
- N-acetyl-cysteine in Schizophrenia: Potential Role on the Sensitive Cysteine Proteome vol.26, pp.None, 2016, https://doi.org/10.2174/0929867326666191015091346
- Peroxiredoxin III Protects Tumor Suppressor PTEN from Oxidation by 15-Hydroperoxy-eicosatetraenoic Acid vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/2828493
- Upregulation of Peroxiredoxin 3 Protects Afg3l 2-KO Cortical Neurons In Vitro from Oxidative Stress: A Paradigm for Neuronal Cell Survival under Neurodegenerative Conditions vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/4721950
- Identification of Proteins and Genes Expressed by Methylophaga thiooxydans During Growth on Dimethylsulfide and Their Presence in Other Members of the Genus vol.10, pp.None, 2016, https://doi.org/10.3389/fmicb.2019.01132
- Antioxidants Special Issue: Peroxiredoxin 6 as a Unique Member of the Peroxiredoxin Family vol.8, pp.4, 2019, https://doi.org/10.3390/antiox8040107
- Protein Redox State Monitoring Studies of Thiol Reactivity vol.8, pp.5, 2016, https://doi.org/10.3390/antiox8050143
- Frugoside Induces Mitochondria-Mediated Apoptotic Cell Death through Inhibition of Sulfiredoxin Expression in Melanoma Cells vol.11, pp.6, 2019, https://doi.org/10.3390/cancers11060854
- Role of Cytosolic 2-Cys Prx1 and Prx2 in Redox Signaling vol.8, pp.6, 2016, https://doi.org/10.3390/antiox8060169
- Inflammation-induced reactive nitrogen species cause proteasomal degradation of dimeric peroxiredoxin-1 in a mouse macrophage cell line vol.53, pp.8, 2016, https://doi.org/10.1080/10715762.2019.1637863
- Selenium, Selenoproteins and Viral Infection vol.11, pp.9, 2016, https://doi.org/10.3390/nu11092101
- Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols : Focus Review vol.119, pp.19, 2016, https://doi.org/10.1021/acs.chemrev.9b00371
- Variability in the redox status of plant 2-Cys peroxiredoxins in relation to species and light cycle vol.70, pp.18, 2016, https://doi.org/10.1093/jxb/erz252
- Protective role of exogenous recombinant peroxiredoxin 6 under ischemia-reperfusion injury of kidney vol.378, pp.2, 2019, https://doi.org/10.1007/s00441-019-03073-z
- The Role of Reactive Oxygen Species in Acute Myeloid Leukaemia vol.20, pp.23, 2019, https://doi.org/10.3390/ijms20236003
- Involvement of peroxiredoxin 2 in cumulus expansion and oocyte maturation in mice vol.32, pp.8, 2020, https://doi.org/10.1071/rd19310
- Protective Role of Peroxiredoxins against Reactive Oxygen Species in Neonatal Rat Testicular Gonocytes vol.9, pp.1, 2020, https://doi.org/10.3390/antiox9010032
- Redox Signaling from Mitochondria: Signal Propagation and Its Targets vol.10, pp.1, 2016, https://doi.org/10.3390/biom10010093
- Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities vol.11, pp.None, 2016, https://doi.org/10.3389/fphar.2020.01234
- Proteomic Analysis of Stationary Growth Stage Adaptation and Nutritional Deficiency Response of Brucella abortus vol.11, pp.None, 2016, https://doi.org/10.3389/fmicb.2020.598797
- Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions—Focus on S-Nitrosation vol.12, pp.None, 2020, https://doi.org/10.3389/fnagi.2020.00254
- Knockout Mouse Models for Peroxiredoxins vol.9, pp.2, 2016, https://doi.org/10.3390/antiox9020182
- Triple Combination of Ascorbate, Menadione and the Inhibition of Peroxiredoxin-1 Produces Synergistic Cytotoxic Effects in Triple-Negative Breast Cancer Cells vol.9, pp.4, 2020, https://doi.org/10.3390/antiox9040320
- Crystal structure of Akkermansia muciniphila peroxiredoxin reveals a novel regulatory mechanism of typical 2‐Cys Prxs by a distinct loop vol.594, pp.10, 2020, https://doi.org/10.1002/1873-3468.13753
- Redox Conformation-Specific Protein–Protein Interactions of the 2-Cysteine Peroxiredoxin in Arabidopsis vol.9, pp.6, 2020, https://doi.org/10.3390/antiox9060515
- Peroxiredoxin I deficiency increases pancreatic β-cell apoptosis after streptozotocin stimulation via the AKT/GSK3β signaling pathway vol.22, pp.3, 2020, https://doi.org/10.3892/mmr.2020.11279
- The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? vol.47, pp.7, 2016, https://doi.org/10.1007/s11033-020-05590-5
- Use of peroxiredoxin for preconditioning of heterotopic heart transplantation in a rat vol.22, pp.2, 2020, https://doi.org/10.15825/1995-1191-2020-2-158-164
- Whey protein boosts the antioxidant profile of rats by enhancing the activities of crucial antioxidant enzymes in a tissue-specific manner vol.142, pp.None, 2016, https://doi.org/10.1016/j.fct.2020.111508
- Enzymatic Antioxidant Signatures in Hyperthermophilic Archaea vol.9, pp.8, 2020, https://doi.org/10.3390/antiox9080703
- Deficiency of peroxiredoxin 2 exacerbates angiotensin II-induced abdominal aortic aneurysm vol.52, pp.9, 2020, https://doi.org/10.1038/s12276-020-00498-3
- Exploration and quantification of ascorbate affecting peroxidase-catalyzed chromogenic reactions with a recirculating-flow catalysis detection system vol.56, pp.77, 2016, https://doi.org/10.1039/d0cc04163g
- Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-71015-9
- Testis-specific peroxiredoxin 4 variant is not absolutely required for spermatogenesis and fertility in mice vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-74667-9
- Unlocking Survival Mechanisms for Metal and Oxidative Stress in the Extremely Acidophilic, Halotolerant Acidihalobacter Genus vol.11, pp.12, 2016, https://doi.org/10.3390/genes11121392
- Oxidative Stress and Antioxidant Treatments in Cardiovascular Diseases vol.9, pp.12, 2016, https://doi.org/10.3390/antiox9121292
- Assessment of Potential Prognostic Value of Peroxiredoxin 1 in Oral Squamous Cell Carcinoma vol.13, pp.None, 2016, https://doi.org/10.2147/cmar.s319048
- Post-Translational Modification of Cysteines: A Key Determinant of Endoplasmic Reticulum-Mitochondria Contacts (MERCs) vol.4, pp.None, 2016, https://doi.org/10.1177/25152564211001213
- Thioredoxin-dependent system. Application of inhibitors vol.36, pp.1, 2016, https://doi.org/10.1080/14756366.2020.1867121
- Antioxidative Stress: Inhibiting Reactive Oxygen Species Production as a Cause of Radioresistance and Chemoresistance vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6620306
- De novo assembly and functional annotation of blood transcriptome of loggerhead turtle, and in silico characterization of peroxiredoxins and thioredoxins vol.9, pp.None, 2021, https://doi.org/10.7717/peerj.12395
- Sex-Biased Gene Expression of Mesobuthus martensii Collected from Gansu Province, China, Reveals Their Different Therapeutic Potentials vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/1967158
- Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS) vol.14, pp.None, 2016, https://doi.org/10.3389/fncel.2020.581950
- Protein Expression of Angiotensin-Converting Enzyme 2 (ACE2) is Upregulated in Brains with Alzheimer’s Disease vol.22, pp.4, 2016, https://doi.org/10.3390/ijms22041687
- The Dawn of Mitophagy: What Do We Know by Now? vol.19, pp.2, 2016, https://doi.org/10.2174/1570159x18666200522202319
- Tyrosine Phosphorylation Modulates Peroxiredoxin-2 Activity in Normal and Diseased Red Cells vol.10, pp.2, 2016, https://doi.org/10.3390/antiox10020206
- Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants vol.10, pp.2, 2016, https://doi.org/10.3390/antiox10020289
- Physical Activity and Redox Balance in the Elderly: Signal Transduction Mechanisms vol.11, pp.5, 2016, https://doi.org/10.3390/app11052228
- Stoichiometric Thiol Redox Proteomics for Quantifying Cellular Responses to Perturbations vol.10, pp.3, 2016, https://doi.org/10.3390/antiox10030499
- The Role of Non-Coding RNAs in the Neuroprotective Effects of Glutathione vol.22, pp.8, 2021, https://doi.org/10.3390/ijms22084245
- Induction of apoptosis in indole-3-carbinol-treated lung cancer H1299 cells via ROS level elevation vol.40, pp.5, 2016, https://doi.org/10.1177/0960327120969968
- Peroxiredoxins—The Underrated Actors during Virus-Induced Oxidative Stress vol.10, pp.6, 2016, https://doi.org/10.3390/antiox10060977
- β-Hydroxybutyrate, a Ketone Body, Potentiates the Antioxidant Defense via Thioredoxin 1 Upregulation in Cardiomyocytes vol.10, pp.7, 2016, https://doi.org/10.3390/antiox10071153
- H2O2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans vol.7, pp.8, 2016, https://doi.org/10.3390/jof7080624
- Rapid Genomic Evolution Drives the Diversification of Male Reproductive Genes in Dung Beetles vol.13, pp.8, 2016, https://doi.org/10.1093/gbe/evab172
- Photosynthesis and chloroplast redox signaling in the age of global warming: stress tolerance, acclimation, and developmental plasticity vol.72, pp.16, 2016, https://doi.org/10.1093/jxb/erab270
- Label-free proteomic analysis reveals differentially expressed Wolbachia proteins in Tyrophagus putrescentiae: Mite allergens and markers reflecting population-related proteome differences vol.249, pp.None, 2021, https://doi.org/10.1016/j.jprot.2021.104356
- Hydrogen peroxide signaling via its transformation to a stereospecific alkyl hydroperoxide that escapes reductive inactivation vol.12, pp.1, 2016, https://doi.org/10.1038/s41467-021-26991-5
- PRDX1 is essential for the viability and maintenance of reactive oxygen species in chicken DT40 vol.43, pp.1, 2016, https://doi.org/10.1186/s41021-021-00211-4
- The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms vol.11, pp.12, 2016, https://doi.org/10.3390/life11121437
- Adaptative Up-Regulation of PRX2 and PRX5 Expression Characterizes Brain from a Mouse Model of Chorea-Acanthocytosis vol.11, pp.1, 2022, https://doi.org/10.3390/antiox11010076