• Title/Summary/Keyword: recycled materials

Search Result 904, Processing Time 0.036 seconds

Experimental Study on Tensile Creep of Coarse Recycled Aggregate Concrete

  • Seo, Tae-Seok;Lee, Moon-Sung
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.337-343
    • /
    • 2015
  • Previous studies have shown that the drying shrinkage of recycled aggregate concrete (RAC) is greater than that of natural aggregate concrete (NAC). Drying shrinkage is the fundamental reason for the cracking of concrete, and tensile creep caused by the restraint of drying shrinkage plays a significant role in the cracking because it can relieve the tensile stress and results in the delay of cracking occurrence. However, up till now, all research has been focusing on the compressive creep of RAC. Therefore, in this study, a uniaxial restrained shrinkage cracking test was executed to investigate the tensile creep properties caused by the restraint of drying shrinkage of RAC. The mechanical properties, such as compressive strength, tensile splitting strength, and Young's modulus of RAC were also investigated in this study. The results confirmed that the tensile creep of RAC caused by the restraint of shrinkage was about 20-30 % larger than that of NAC.

The Study Concrete Brick Material of Recycle Cement Using (재생시멘트를 이용한 콘크리트벽돌의 물성 연구)

  • Seo Kyung-Ho;Park Cha-Won;Ahn Jae-Cheol;Hee Byeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.87-90
    • /
    • 2004
  • Serious problems of the environment protection and resource exhaustion are exhibited. due to the increase of the construction materials and activation of the remodeling, recently. Especially, most of the advanced countries. recycling plan for the waste concrete is vigorously progressing. The purpose of this study is making advances in the recycling of waste concrete material for use as recycled aggregate to make secondary concrete product. Using recycled aggregates form demolished concrete, we manufactured cement bricks to experiment overall performance in Korean Standard and feasible performances. On the recycled cement, in the case of cement : aggregate is 1 : 7 is satisfied with KS F 4004 : dimensions, water absorption, compressive strength of quality of a standard. So we concluded that it has great feasibility to apply these products to construction industry.

  • PDF

The Fluidity of the Recycled Thermoplastic Elastomer on the Injection Molding Process (사출성형공정에서 엘라스토머 재생재의 유동성)

  • No, B.S.;Han, S.R.;Jeong, Y.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.271-275
    • /
    • 2007
  • These days, recycling of plastic material has become a major issue due to the landfills and environmental problem. This study investigates the fluidity of thermoplastic vulcanizate(TPV), which can be used for an automobile part such as a weather strip, in order to replace ethylene propylene rubber(EPDM). Injection molding experiments with the spiral flow test mold and panel cover mold are conducted to examine the fluidity of TPV during injection molding. It is found out that the recycled TPV's flow length is a little bit longer than the virgin TPV. However, the filling weight for a panel cover parts by a recycled TPV is almost the same as that by a virgin TPV.

Engineering Characteristics of Resource-Cycling Mortar according to the Variation of Illite Replacement Ratio and Fine Aggregate Type (일라이트 치환률 및 잔골재 종류 변화에 따른 자원순환형 모르타르의 공학적 특성)

  • Kim, Min-Yoyng;Song, Yuan-Lou;Kim, Sang-Sup;Yoon, Won-Geun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.46-47
    • /
    • 2015
  • This study has analyzed the engineering characteristics of resource-cycling mortar according to the variation of fine aggregate type using illite with high development potentials by setting the goal as developing eco-friendly construction materials. As a result, while flow has increased if recycled fine aggregate and waste refractory are used separately or mixing them adequately in case of flow and compressive strength, the flow had somewhat declined followed by illite replacement. However, the possibility of such usage is determined to be adequate if used by mixing illite, recycled fine aggregate and waste refractory properly due to the dry shrinkage effect.

  • PDF

A Study on the Physical Properties of Interlocking Block with the Contents of the Recycled Aggregate (순환골재 혼합비율에 따른 인터로킹 블록의 물리적 특성에 관한 연구)

  • Jeon, Chan-Soo;Song, Tae-Hyeob;Yoon, Sang-Hyuck
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.71-78
    • /
    • 2012
  • Recycled aggregates are made from construction wastes, and they have many national and social benefits by saving energy, developing substitute resources, and protecting environment. However, low-quality recycled aggregate with low density and high absorption rate cannot be used for structural concrete aggregate but is used mainly for low added value. Therefore, this study aims to identify the characteristics of the materials of recycled aggregates made after crashing and pulverizing waste concrete. For this, their major physical characteristics of cement content, absolute dry density, absorption rate, etc. were reviewed to make a mix design (draft) for the production of the secondary product and performance evaluation was done on the bending strength, absorption rate, bending strength after freezing and thawing, compressive strength, air-dried gravity, etc. of the test products produced by applying the mix design to compare the results with the quality standards of GR mark. The results of the tests showed that the substitution rate of recycled aggregate increased to 50~90 %, which is of superior quality than the performance standards of GR F 4007. Therefore, it is thought that they can be used for various construction works with certain physical characteristics applicable to the production of secondary concrete products using recycled aggregates.

  • PDF

A Study on Engineering Characteristics of Asphalt Concrete Mixtures Using Filler with Recycled Waste Lime (부산석회를 채움재로 재활용한 아스팔트 혼합물의 공학적 특성)

  • Hwang, Sung-Do;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.71-78
    • /
    • 2005
  • This study focuses on finding out engineering characteristics of asphalt concrete mixtures using mineral fillers with recycled waste lime, which is a by-product in the Soda Ash(Na2CO3) production course. The materials tested in this study were made with 25%, 50%, 75% and 100% of mixing ratio based on the conventional mineral filler ratio to analyze the recycle possibility of the waste lime. The asphalt concrete mixtures with recycled waste lime and hydrated lime, and conventional asphalt concrete mixtures were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete mixtures at the wide range of temperatures. It is also found that the mixtures with recycled waste lime show higher resistance against stripping than conventional asphalt concrete mixtures. It is concluded from various test results that the waste lime can be used as mineral fillers and especially can greatly improve resistance to permanent deformation of asphalt concrete mixtures at high temperatures.

  • PDF

Durability of Mortar Matrix Replaced with Recycled Fine Aggregates (순환골재(循環骨材)를 혼입(混入)한 모르타르 경화체(硬化體)의 내구(耐久) 특성(特性))

  • Kim, Jong-Pil;Lee, Seung-Tae;Jung, Ho-Seop;Park, Kwang-Pil;Kim, Seong-Soo
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.20-27
    • /
    • 2007
  • This paper presents a detailed experimental study on the durability properties of mortar matrix made with two kind of recycled fine aggregates(RAA, RAB) and five replacement levels (0, 25, 40, 75 and 100) of the recycled fine aggregates as a partial replacement of natural fine aggregate (NA). The durability properties of mortar matrix was evaluated using compressive strength, chloride ion ingress, sulfate attack and carbonation. The test results indicated that the water absorption and Adhered mortar of the recycled fine aggregate was a major factor controlling durability properties. Hereafter, when using built recycled fine aggregate is expected, appropriate removal Adhered mortar and reasonable replacement ratio of recycled fine aggregates was 25% weight of cement are advised to apply to the concrete materials.

Physical Properties of Planting Concrete Using Recycled Aggregates (재생골재를 이용한 식재용 콘크리트의 물리적 특성)

  • 한천구;오선교;이상태;김정진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.16-23
    • /
    • 2002
  • In construction field, million tons of demolished concrete are produced in korea. It is urgently needed that they are used as recycled materials in order to prevent environment pollution and gain economic profits. However, existing recycling methods of demolished concrete have their limits for wide application. They have been only focused on the burying and banking. Therefore, in this paper, physical and mechanical properties of planting concrete using construction wastes for aggregates are described in order to investigate the validities of demolished concrete as recycled aggregates. The Properties of strength and durability are tested. According to the experimental results, compressive strength and freeze-thaw resistance of planting concrete using recycled aggregates shows worse performance than those using crushed stone concrete. But, it shows positive performance on the absorption ratio and thermal conductivity. Especially, considering the side of recycling of concrete wastes, it is recommended that recycled aggregates made with construction wastes is applied to planting concrete.

Research on Design Mixing and Manufacturing of Recycled Aggregate for Concrete and Coarse Aggregate of Steelmaking Slag (콘크리트용 순환골재와 제강슬래그의 굵은골재 설계배합 및 제조에 관한 연구)

  • Jong-Gil Kim;Seung-Tae Lee;Tae-Han Kown
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.341-348
    • /
    • 2023
  • In this study, in order to minimize the increase in the amount of various industrial by-products due to the rapid growth of the industry and the intensification of the depletion of natural aggregate resources, the material test using recycled aggregate and steelmaking slag and the proper mixing ratio of recycled concrete were to be derived. In this study, first, the conformity of the quality standards of the materials used in the field was confirmed, and the workability and molding results were shown when used alone or mixed. Therefore, the feasibility of application as aggregate for concrete was evaluated through a total of 4-type mixtures of cement types, admixtures, coarse aggregates, and fine aggregates. As a result of the experiment, it was confirmed that the slump of unhardened concrete, the amount of air, chloride and compressive strength of hardened concrete according to the replacement rate were different from the measured values of general concrete quality characteristics. According to this, it was confirmed that the quality characteristics of the standard design criteria were satisfied.

Effect of pozzolans on mechanical behavior of recycled refractory brick concrete in fire

  • Nematzadeh, Mahdi;Baradaran-Nasiri, Ardalan;Hosseini, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.339-354
    • /
    • 2019
  • Reusing building materials and concrete of old buildings can be a promising strategy for sustained development. In buildings, the performance of materials under elevated temperatures is of particular interest for determining fire resistance. In this study, the effect of pozzolan and aggregate type on properties of concrete exposed to fire was investigated. In doing so, nanosilica with cement-replacement levels of 0, 2, and 4% as well as silica fume and ultrafine fly ash with cement-replacement levels of 0, 7.5, and 15% were used to study effect of pozzolan type, and recycled refractory brick (RRB) fine aggregate replacing natural fine aggregate by 0 and 100% was utilized to explore effect of aggregate type. A total of 126 cubic concrete specimens were manufactured and then investigated in terms of compressive strength, ultrasonic pulse velocity, and weight loss at $23^{\circ}C$ and immediately after exposure to 400 and $800^{\circ}C$. Results show that replacing 100% of natural fine aggregate with recycled refectory brick fine aggregate in the concretes exposed to heat was desirable, in that it led to a mean compressive strength increase of above 25% at $800^{\circ}C$. In general, among the pozzolans used here, silica fume demonstrated the best performance in terms of retaining the compressive strength of heated concretes. The higher replacement level of silica fume and ultrafine fly ash pozzolans in the mixes containing RRB fine aggregate led to a greater weight loss rate, while the higher replacement level of nanosilica reduced the weight loss rate.