• Title/Summary/Keyword: recursive computation

Search Result 80, Processing Time 0.027 seconds

Analysis of Digital Hologram Rendering Using a Computational Method

  • Choi, Hyun-Jun;Seo, Young-Ho;Jang, Seok-Woo;Kim, Dong-Wook
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.205-209
    • /
    • 2012
  • To manufacture a real time digital holographic display system capable of being applied to next-generation television, it is important to rapidly generate a digital hologram. In this paper, we analyze digital hologram rendering based on a computer computation scheme. We analyze previous recursive methods to identify regularity between the depth-map image and the digital hologram.

Development of a Real-Time Vehicle Dynamic Model for a Tracked Vehicle Driving Simulator

  • Lee, Ji-Young;Lee, Woon-Sung;Lee, Ji-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.115.2-115
    • /
    • 2002
  • A real-time vehicle simulation system is a key element of a driving simulator because accurate prediction of vehicle motion with respect to driver input is required to generate realistic visual, motion, sound and proprioceptive cues. In order to predict vehicle motion caused by various driving actions of the driver on board the simulator, the vehicle model should consist of complete subsystems. On this paper, a tracked vehicle dynamic model with high efficiency and effectiveness is introduced that has been implemented on a training driving simulator. The multi-body vehicle model is based on recursive formulation and has been automatically generated from a symbolic computation package develop...

  • PDF

Determination of Camera System Orientation and Translation in Cartesian Coordinate (직교 좌표에서 카메라 시스템의 방향과 위치 결정)

  • 이용중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.109-114
    • /
    • 2000
  • A new method for the determination of camera system rotation and translation from in 3-D space using recursive least square method is presented in this paper. With this method, the calculation of the equation is found by a linear algorithm. Where the equation are either given or be obtained by solving five or more point correspondences. Good results can be obtained in the presence if more than the eight point. A main advantage of this new method is that it decouple rotation and translation, and then reduces computation. With respect to error in the solution point number in the input image data, adding one more feature correspondence to required minimum number improves the solution accuracy drastically. However, further increase in the number of feature correspondence improve the solution accuracy only slowly. The algorithm proposed by this paper is used to make camera system rotation and translation easy to recognize even when camera system attached at end effecter of six degrees of freedom industrial robot manipulator are applied industrial field.

  • PDF

Development of a Cutting Simulation System using Octree Algorithm (옥트리 알고리즘을 이용한 절삭 시뮬레이션 시스템의 개발)

  • Kim Y-H.;Ko S.-L.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.2
    • /
    • pp.107-113
    • /
    • 2005
  • Octree-based algorithm is developed for machining simulation. Most of commercial machining simulators are based on Z map model, which have several limitations to get a high precision in 5 axis machining simulation. Octree representation is three dimensional decomposition method. So it is expected that these limitations be overcome by using octree based algorithm. By using the octree model, storage requirement is reduced. And also recursive subdivision was processed in the boundaries, which reduces useless computation. The supersampling method is the most common form of the anti-aliasing and usually used with polygon mesh rendering in computer graphics. Supersampling technique is applied for advancing its efficiency of the octree algorithm.

Image encryption through the chaos function and elementary row column operations (카오스 함수와 기본 행렬변환을 통한 영상의 암호화)

  • Kim, Tae-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.269-272
    • /
    • 2005
  • For the efficient image encryption, we proposed the encryption algorithm using the chaotic function and elementary matrix operation defined on the bit plane decomposition. Though the chaotic encryption algorithm is faster than block encryption, it uses a real number computation. In this sense, we use the row and column operations on the bit-plane decomposed images combined with logistic function for the recursive rounding number, too.

  • PDF

Fast DFT Matrices Transform Based on Generalized Prime Factor Algorithm

  • Guo, Ying;Mao, Yun;Park, Dong-Sun;Lee, Moon-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.449-455
    • /
    • 2011
  • Inspired by fast Jacket transforms, we propose simple factorization and construction algorithms for the M-dimensional discrete Fourier transform (DFT) matrices underlying generalized Chinese remainder theorem (CRT) index mappings. Based on successive coprime-order DFT matrices with respect to the CRT with recursive relations, the proposed algorithms are presented with simplicity and clarity on the basis of the yielded sparse matrices. The results indicate that our algorithms compare favorably with the direct-computation approach.

Design of Linear, Exponential and Bell Type Discrete Filters for Acceleration and Deceleration of Servo Motors (서보모터의 가감속을 위한 직선형,지수형 및 벨형 이산필터 설계)

  • Shin, Dong-Soo;Chung, Sung-Chong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.52-60
    • /
    • 1997
  • This paper proposes the effective method of the software based motion control by using lenear, exponential and bell type discrete filters for acceleration and deceleration of servo motors. Recursive filters are designed in discrete time domain which can reduce computation time and vibration of motors due to load disturbance. Also it deals with the method which decides the time constants of filters when a machine tool is driven at rapid, cutting and jog feedrate. Validity of the proposed method is verified by corner cutting experiments.

  • PDF

Robot Locomotion via RLS-based Actor-Critic Learning (RLS 기반 Actor-Critic 학습을 이용한 로봇이동)

  • Kim, Jong-Ho;Kang, Dae-Sung;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.893-898
    • /
    • 2005
  • Due to the merits that only a small amount of computation is needed for solutions and stochastic policies can be handled explicitly, the actor-critic algorithm, which is a class of reinforcement learning methods, has recently attracted a lot of interests in the area of artificial intelligence. The actor-critic network composes of tile actor network for selecting control inputs and the critic network for estimating value functions, and in its training stage, the actor and critic networks take the strategy, of changing their parameters adaptively in order to select excellent control inputs and yield accurate approximation for value functions as fast as possible. In this paper, we consider a new actor-critic algorithm employing an RLS(Recursive Least Square) method for critic learning, and policy gradients for actor learning. The applicability of the considered algorithm is illustrated with experiments on the two linked robot arm.

Lightweight Super-Resolution Network Based on Deep Learning using Information Distillation and Recursive Methods (정보 증류 및 재귀적인 방식을 이용한 심층 학습법 기반 경량화된 초해상도 네트워크)

  • Woo, Hee-Jo;Sim, Ji-Woo;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.378-390
    • /
    • 2022
  • With the recent development of deep composite multiplication neural network learning, deep learning techniques applied to single-image super-resolution have shown good results, and the strong expression ability of deep networks has enabled complex nonlinear mapping between low-resolution and high-resolution images. However, there are limitations in applying it to real-time or low-power devices with increasing parameters and computational amounts due to excessive use of composite multiplication neural networks. This paper uses blocks that extract hierarchical characteristics little by little using information distillation and suggests the Recursive Distillation Super Resolution Network (RDSRN), a lightweight network that improves performance by making more accurate high frequency components through high frequency residual purification blocks. It was confirmed that the proposed network restores images of similar quality compared to RDN, restores images 3.5 times faster with about 32 times fewer parameters and about 10 times less computation, and produces 0.16 dB better performance with about 2.2 times less parameters and 1.8 times faster processing time than the existing lightweight network CARN.

Four proofs of the Cayley formula (케일리 공식의 네 가지 증명)

  • Seo, Seung-Hyun;Kwon, Seok-Il;Hong, Jin-Kon
    • Journal for History of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.127-142
    • /
    • 2008
  • In this paper, we introduce four different approaches of proving Cayley formula, which counts the number of trees(acyclic connected simple graphs). The first proof was done by Cayley using recursive formulas. On the other hands the core idea of the other three proofs is the bijective method-find an one to one correspondence between the set of trees and a suitable family of combinatorial objects. Each of the three bijection gives its own generalization of Cayley formula. In particular, the last proof, done by Seo and Shin, has an application to computer science(theoretical computation), which is a typical example that pure mathematics supply powerful tools to other research fields.

  • PDF