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Fast DFT Matrices Transform Based on Generalized
Prime Factor Algorithm

Ying Guo, Yun Mao, Dong Sun Park, and Moon Ho Lee

Abstract: Inspired by fast Jacket transforms, we propose simple
factorization and construction algorithms for the M -dimensional
discrete Fourier transform (DFT) matrices underlying generalized
Chinese remainder theorem (CRT) index mappings. Based on suc-
cessive coprime-order DFT matrices with respect to the CRT with
recursive relations, the proposed algorithms are presented with
simplicity and clarity on the basis of the yielded sparse matrices.
The results indicate that our algorithms compare favorably with
the direct-computation approach.

Index Terms: Discrete Fourier transform (DFT) matrices, fast
Jacket transform, generalized prime factor algorithm (GPFA),
Kronecker product, sparse matrices.

I. INTRODUCTION

It is well known that the Hadamard transform and its
generalizations can be used to represent signals and images
[1]-{3]. Motivated by the center-weighted Hadamard transform
(CWHT) [4}, in 1989, Lee proposed Jacker matrices with el-
egant inverse constraints. The interesting orthogonal matrices,
such as Hadamard, discrete Fourier transform (DFT), and Slant
and Haar matrices, all belong to the Jacket matrices family [5].
Because of the simple and efficient calculations of the inverse
matrix, the Jacket transform and its reverse transforms have been
extensively used [5]-{11]. These transforms are useful for sig-
nal processing, communications, cryptography, and image com-
pression [12}-[16].

On the other hand, bounds on generalized prime factor al-
gorithms (GPFA) for fast Fourier transform (FFT) have been
widely established [17]-[22]. In information processing, it is
important to know the exact structure of the matrix and its de-
composition. To achieve this, the fast Jacket transforms are de-
rived using recursive relations based on the Kronecker product
of lower-order matrices [9]-[11]. Given this motivation, we fur-
ther consider the combination of fast Jacket transforms with
the GPFA underlying generalized Chinese remainder theorem
(CRT) index mappings. In particular, we suggest efficient fac-
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torization and construction approaches for M -dimensional DFT
matrices.

Since the mapped DFT matrix following an important his-
torical result has close relation with Kronecker product, the
M -dimensional DFT matrices can be factorized and constructed
with much smaller computation than the previous transforms.

This paper is organized as follows. Section II introduces
Jacket matrices and their fast transforms. Section HI defines
DFT matrices which are class of Jacket matrices which are a
class of Jacket matrices. Section IV discusses general fast fac-
torization and construction algorithms for M -dimensional DFT
matrices. We then describe in detail the construction approach
for 2-D DFT matrices. Finally, a discussions and our conclu-
sions are presented in Section V.

II. JACKET MATRICES AND THEIR TRANSFORMS

In this section, we introduce Jacket matrices and two typical
fast Jacket transforms. For clarity, we begin with the Kronecker
product.

Definition 1. Let matrix A be m X n and matrix B k x [. The
Kronecker product of A and B is an mk X nl matrix mk x nl
and is denoted A ® B, i.e.,

(Ll,lB (LLQB al,nB
az1p a22B aznB

A@B= (1
am,lB &m,ZB am,nB

Some properties of the Kronecker product [1]-[3] will be use-
ful for the fast constructions of DFT matrices in this paper (as-
sume the matrices involved have appropriate dimensions):

Property 1: (A® B)®C =A@ (Ba (),

Property2: AR (B (C)=(A®B)& C,

Property 3: (A ® B)(C ® D) = (AC) ® (BD).

On the other hand, the CWHT was first discovered as a typical
case of Jacket matrices whose inverse matrix is found by taking
the elementwise inverse. We extend this idea and give a general
definition of Jacket matrices [5].

Definition 2. Consider a square matrix [J],, = [Js.t|mxm. If
its inverse matrix is obtained simply by taking the element-wise
inverse, i.e.,

- 1 .
[‘]]ml = 6[1/]S,t]z;z><m

for 0 < s,¢t < m — 1, where ' is a normalized constant, then
we call [J},,, a Jacket matrix. That is, we have

Jo,o Jo,1 Jo,m—1
J1,0 J1a Ji,m—1
[T = . . (2)
Jm=1,0 Jm—1,1 Jm—1,m—1
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and its inverse

1/j01
/i1

l/jO,m—l
1/ 31,m-1

1/jo,0
It = 1| Yiwe
T =5 i

/

&)

1/dm=1,0 VJm-1,1 - Yim—1.m-1

where T' denotes the transpose of a matrix. Obviously, from this
definition, we have the following relation:

m .
Z ].s,k -0
1 Jtk

@

where 1 < s,t < m, s # t. It is obvious that because of the
special structure of the Jacket matrix, its inverse can be obtained
via simple algebra [8], [11], [13].

Given the simplicity of the calculation of the inverse ma-
trix, the Jacket transform and reverse Jacket transform based
on Jacket matrices have been widely applied [5]-{11]. We now
present the fast Jacket transforms construction and factorization
algorithms for large Jacket matrices.

Theorem 1. Suppose J, and .J, are Jacket matrices, where p

" and g are prime numbers. Let m and n be non-negative integers.
Then, larger Jacket matrices Jy—pm 4~ may be constructed in
the following way:

m—1
Jy = {I,fz@ (H Ipmi—l®¢]p®]pi)}
=0
-1
- { (H an«i_@Jq@Iqi) ®, m}
=0
= {an® (H [pm -i@Jp@Ipz—l) }
f=1

. { (H an—i®Jq®Iqi—l) ®Ipm}
dm=]

where Iy is the N x N identity matrix.

Proof: Based on the Jacket matrix J, for the prime number
p and the nonnegative integer m, we construct a larger Jacket
matrix J,m as follows.

4

me = me—l ® Jp

=[5 ® Jp ® Ln—. (6)
i=1
By the properties of the Kronecker product, we have
Jpmgn = Jgn & Jpm
= (Iyn Jop) ® (Jym Iym) @)
The larger Jacket matrix Jymq~ can been constructed using
. a

If J can be factored into J, and .J;, a decomposition algo-
rithm is possible. The decomposition is the reverse of the con-
struction. Note that the factorizable condition is the same as that
for the Kronecker decomposition, i.e., if a matrix

C=Cy-C;-Cp
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where C; can be expressed in a Kronecker form, then C can be
factored [10].

Corollary 1. Given a Jacket matrix Jy of order N = p™¢q",
if Jyv can be factored into J, and J,, then the Jacket matrix Jy
can be decomposed via (7).

We note that an arbitrary large Jacket matrix can be expressed
as a Kronecker product of such matrices using Theorem 1. How-
ever, in special cases where the matrix cannot be factored, we
must use a special method for the construction and decomposi-
tion.

III. CONSTRUCTIONS OF DFT MATRICES
We first introduce the N-point DFT matrix defined by

N-1

Z x(n) Wik

=0

Ck) = ®

where Wy = e 7@™/N) and k = 0,1,...,N — L.
Definition 3. The N x N matrix Fx = [W3f], for s,t €
{0,1,...,N — 1}, ie,

_W]S] WI% I/I]/v](\)/'z VI]/VI%_:[ -
Wy W]{F I/gl(\g\r..z) Wg{\lfv_l)
Wi Wi Wy ) W,

o= wh wh WIN-D SN (9)
WO WL D=2 (-1

is called the N-point DFT matrix. It is a square matrix whose
rows and columns are indexed by s and £, respectively, such that
the entry in row s and column ¢ is W, for0 < s,t < N — 1.
Observe that W4 is the complex unit and limits elements in the
matrix to a natural circle field of modulo N. One may easily
check that the inverse is Fy' = +[Wx*"]T, which satisfies
Definition 2. Thus, DFT matrices are a class of Jacket matrices.

The pattern is clearer in matrix form. For N = 2, N = 3, and

N =4, we have
o [WE WS _ 11
EPTAwW W T |1 -1
o L[We Wyl 1711
T wRwyt) T 2|11
11 (L
F = ]_43':&322e;’s‘l_7r ,Fg_lz-— ]_e’%e%71
—idm gsm 3 fn jgm
L1 e ™ e73 L1e™ e7 |
11 1 1 11 1 1]
_flt=i-117 I I O B
Ba=1y 11 Spf =715 219
1§ —1~j 1—j -1 j |

We note that F, is the lowest-order Hadamard matrix [H]z; and
if we perform row and column permutations of Fy, we can ob-
tain '
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11 1 1
1—j j -1
1§ —j -1
1-1-11

F, = , an

which is the lowest-order center-weighted Hadamard matrix
[WH]y [4]. In fact, the DFT matrix Fy of order N =
4,8,16, -, can generally be converted to a center-weighted
Hadamard matrix [W H]x via a series of row and column per-
mutations.

Using matrix notation FZ = C', we rewrite 8)as

[ 1 1 1

_ z(0) C(0)
1 Wy Wy (1) c(1)
1 W2 W z2) | _| c@
1wy W](\,N*l)z ] (N —1) C(N -1)
(12)
and obtain the inverse of Fy as follows:
M1 1 ce 1 ]
e
1 - Zo(N-1
Fit= |1 W' Wy ) (13)
1w, (Y’

IV. FAST JACKET TRANSFORM BASED ON GPFA

This section considers combining fast Jacket transforms and
the GPFA underlying the generalized CRT index scheme. An
historical result will play an important role in this investigation.

For the one-dimensional DFT defined by (8), assume that N
can be factored into mutually prime (i.e., coprime) integers

N = N;Ny---N,. (14)

For m = 2, Temperton [18] proposed a simple index scheme
using the CRT. The indexes become

n =< Kini + Kong >n,

k=< K3k + K4k >N (15)
under the conditions < K1 K3 >n= Ny, < KoKy >ny= N;
and < K1 K4 >y=< K3K3 >yn= 0, where the notation
< - >y represents mod N. The result is the two-dimensional
DFT transform

N;—1Nz—1

PBDBE

ny= 07‘&2 0

Clkr, ko) = #(n1,n2)

. K1 Kanik, Ki1Kaniks KoKsnsk; Ko Kynoks
WE Wi Wk Wk

No—1N;—-1

=2 D

No— =0 ’I'le()

(1, na) WAk W ek (16)

where 0 < n1,k; < Ny —1land 0 < ng, ks < Ny — 1. Us-
ing the more general form of CRT [21], one may obtain an A -
dimensional DFT as follows:

Theorem 2. The index mapping

n=<Kin,+ Kong +---
k=< Liky + Loks + - - -

+ K >n,

+ Lpkm >n an

under the conditions
< K;L; >n=M;
where M; = N/N;, fori = 1,2,--- ,m, and < K;L; >ny=

0, for i # j converts the one-dimensional DFT into an M-
dimensional DFT

N2 1N1 1
Clky, ko, m Z Y dnang )
Ny, =0 no=0 n1=0
W Wk L T (18)
where

&(n1,n2 - Ny

(<z>)
o\ (B,

In above formula, N is given by (14) based on m mutually prime
factors N; for ¢ = 1,2,---,m. The details of these maps are
given in [18] and [21]. Other index schemes [18]-[20], [22] can
also achieve this result.

For two-dimensional DFT, Temperton noted that combining
Ruritanian and CRT leads to true 2-D DFTs (Fiy, ® Fj,) that
require no “twiddle factors.” This combination mapping is not
unique in eliminating twiddle factors, as observed by Lun and
Siu in 1993, but any mapping that eliminates twiddle factors
must belong to the set of CRT maps. This result also holds for
M-dimensional DFT [22]. It is somewhat tedious to show that
the twiddle factors disappear. Here, we present only an impor-
tant historical result. Using matrix notation, F¥ = C becomes
Py 'EP;Z = C, where Py Uand P; are the output/input map
permutation matrices, and ' = Fn; ® Fiv, @ -- - ® Fy, . Thus,
we write

C(k'lv k27 )

P5HFy, ® Fn, ® - ® Fy, )Pr = C. (19)

This gives

Fy =P, (Fy, ® Fy, ® -+~ ® Fn,.) Py (20)
which implies that after row/column permutations, Fy can be
represented as the Kronecker product of successive coprime-
order DFT matrices. It is obvious that Fx can be factored.

Our goal is to explore fast factorization/construction trans-
forms for the DFT matrix in (20). Note that P L (or P h may
not be representable as a linear form modulo N. There is no

3-D or higher-dimensional CRT mapping with linear inverses,
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and only some 2-D CRT mapping has a linear inverse [22]. For-
tunately, in practice this does not significantly enhance the com-
putational complexity. Therefore, we consider the construction
of the combined matrix F = 'y, ® Fy, ® - - - @ Fy, . For con-
venience, we denote E as F;\, from now on. If a fast transform
for matrix lev is available, we can achieve our goal via suitable
permutation maps. In the following, we omit the permutation
maps that have no impact on our results.

A. Fast Factorization Transform for Multi-Dimensional DFT
Matrices

In this subsection we show that the DFT matrices are a class
of Jacket matrices, which implies that the fast Jacket transform
may be applied. Furthermore, we propose a generalized factor-
ization transform for mapped M -dimensional DFT matrix. This
regular decomposition is based on a sparse-matrix factorization
of the prime-order DFT matrices in Kronecker product form of
the identity matrices and successive prime-order DFT matrices.

Theorem 3. Suppose that IV is product of coprime numbers,
ie, N = pipa - -pm forp; = N;y 1 <0 < m. Let Fy, bea
DFT matrix of order p;. The factorization of the matrix Fly =
F,, ® Fp, ® --- ® F,, may be expressed as

Fy=ClC2...om Q1)
where
C;?: :Ipl ®IP2"’®IP¢~] ®F«,
& lpi—H ® IP¢+2 e ® Ipm . (22)
Proof: When p; = pg = -+« = pp, = p, we obtain
Cho=Chm =Ii1s @ Fp ® Iym-s
and
m
Fy =[[(L-1 ® F, @ Lym-s). (23)

i=1

Assume that the hypothesis holds for m, we show that it must be
true for m + 1. For 1 < ¢ < m, we have the following formula
from the hypothesis [11]:

C;m.(.l = lpi-1 X Fp o2} Ipm+1-i
=Li1QFp® (Ip’"—i ® Ip)
= (i1 @ Fp @ Iym-i) ® I,

=Clm ® I, (24)

80
Cpts = Lm @ Fpy ® Lo = Lym ® K. 5)
Thus,
Fpm-H - C;m+1 CSm-H et g}n+1 C;?nﬁji
= (Copm @ Ip)(Com @ I) -+ - (Cifta @ L) (Iym @ F)
= (ChnCim -+ Cplt Iy ) @ Fp

= Fm @ F,. (26)
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Since (A ® B)(C @ D) = (AC) & (BD) [24], (26) is verified
completely. Therefore, by substituting I,y ® Ip, -+ ® I,_, for
Li-v,and Iy, ®I,,,, - @I, for Im—:, we can easily obtain
(31). Hence, the theorem is proved. O

Example 1: Let N =30 = 2-3.5,and p; = 2, p2 = 3, and
ps = 5. In this case, the DFT matrix F5g of size 30 can be
decomposed as

Fyy = C3C3C3
= (Lol L FseI:)(lh®l;® Fs)

[(Co 0 0 Cy 0 0]
0Cy 0 0Cy 0
0 0Cy 0 0 Cy
Co 0 0C,L 0 0
0Co 0 0C; O
0 0Cy 0 0 4

Do Dg Dy 0 0 0]
DeDi Dy 0 0 0O
DoDy Dy 0 0 0
0 0 0 Dy Dy Dy
0 0 0 Dy Dy Dy
0 0 0 Do Dy D |

[E, 0 0 0 0 0]

0Ea 0000

0 0Eb 0 0 O

00 0E 0 0 27)

0 0 0 0 Ey O

| 00 0 0 0 Eo]

where

A0 0 0 0
0 Wi o0 0 0

Ci=|0 0 W 0 0|,
0 0 0 Wi o0
| 0 0 0 0 W
(Wi 0 0 0 0
0O W 0 0 0

Dij=]10 0 Wi 0 0 |,
0 0 0 W 0
0 0 0 0 W
WY Wl wg w2 wp
W9 Wi w2 w2 wy

Ey= | W) W2 wi wi wg (28)
W) W wi wi w2
WD W WE w2 W

fori=0,1landj =0,1,2.

The signal flowchart corresponding to (27) is shown in Fig. 1,
where the symbols X; and Y;, for 1 < ¢ < 30 represent in-
put and output signals, respectively. It is easy to see that the
fast transform for a matrix of order N = 30 requires 210 ad-
ditions and 300 multiplications.whereas direct computation re-
quires 870 additions and 900 multiplications. Obviously, the fast
transform is faster than the direct approach. We note that the
permutation mapping for the input/output signals has not been
shown, because for three or more dimensions, the linear inverse
of the permutation matrix is unrepresentable.
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2-point PE

3-point PE 5-point PE

X, S Y,
X, 263
x, £
X Y,
X5 ¥s
X, ¥s
X; Y,
Xq ¥y
Xy ¥y
o Y
X M
X2 T,
Xy i3
X4 Y4
Xis 7is
Xi6 Yi6
Xi4 Yy
Xig g Yig
i S
. N ¥ % 4 “ 2 7
M J "
.  \XXH// ~
20 7] N
X WA S~ ¥y
X V¥ xX=Z ,
2 MR =% 2
v B XARARK X e
3 AV A A AV Ty
v 1HH A @A‘g‘x’z VAN v
2 WAV g2
RTINS ;
d AR »
B PPN
26 en
X7 Iy
Xog e
Xy T
X3 EN

Fig. 1. Signal graph for DFT matrices transform of size 30.

B. Fast Construction Transform for M -Dimensional DFT Ma-
trices

This subsection concentrates on fast construction of mapped
M -Dimensional DFT matrices. In paricular, the construction of
a 2-D DFT matrix is described in detail.

In Theorem 3, we show that the formula

m

Fy =]ty ® F, @ Lims)

=1

(29)

plays a key role in the construction and decomposition of a com-
plex matrix. By Theorem 1, we modify this formula as

m

FJ/V = H(Ipm~i & Fp o] Ipi—l)
i=1

(30)

which is the reverse procedure of the construction.

Theorem 4. Let F,, be a DFT matrix of order p;, 1 <4 < m.
The construction for the matrix Fj, = Fp@F, @ - ®F,,
may be expressed as

Fy =D, D2 ...D* (31)

where

D}ih' = Ipi+1 ® Ipi+2 e ®Ipm ® F i

Ly, @Ip, -+ I, (32)
Proof: By substituting (30) for (23) and following the proof
of Theorem 3, we can easily prove this theorem. O
For a comparison with example 1, we again consider N =
2 x 3 x 5. By Theorem 4, the fast construction of Fjq is

Fy = D3 D3D3
= (Ig ® Iy ® FQ)(I5 ® 3 ® I2)(F5 @I, ® I3)

which indicates that both the construction and decomposition
are only minimally related to the sparse matrices.

For 2-D linear maps (N = pip2), Schatzman suggested that
only some CRT maps have linear inverse maps. For clarity, we
note the CRT maps for n — (nq,ns2), ie., Ky = aipe, Ko =
asp1, ged(eq,p1) = 1 and ged(az, p2) = 1, where a1 and as
are integers. In particular, the CRT maps given by a; = p, !
mod p1, az = (zp1) mod py, and 2 = |a1p2/p1] is the unique
CRT maps that has a linear inverse, which is its own inverse.
Clearly, we have

FN:PO_I(FZH®sz>PI:PO<Fp1®Fp2)PI (33)
which can easily be constructed via Theorem 4 with the avail-
able permutation maps.

Example 2: Consider N = 3-5. If we choose K1, since a1 =
51 mod3 = 2, K1 = 25 = 10. For z = [(25)/3] =
3and a; = (3-3) mod 5 =4, K, = 4.3 = 12. Therefore,
the permutation maps can be uniquely represented in a signal
flowchart. By Theorem 4, we have

Fis = Po((Is ® F3)(F5 ® I3)) Pr. (34)

Given the DFT matrices F3 and F3, 1.e.,
(35)

and
WE? W5O W5O W50 Wy
Wy Wy w2 W wy
wh W2 Wi Wi w} |
wy
wy

Fy = (36)

we construct the desirable matrix F15 via (34). The factor graph
for the above equation is plotted in Fig. 2. The permutation
maps are shown at the left and right, respectively. This trans-
form requires 90 additions and 120 multiplications. whereas di-
rect computation requires 210 additions and 225 multiplications.
Thus, our approach is faster than the existing algorithms.

Table 1 presents a comparison of direct computation and fast
factorization/construction algorithms for M -dimensional DFT
matrices. From this table, we can see that our algorithms are
more efficient.
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3-point transform PE

5-point transform PE

Fig. 2. Signal flow graph for DFT transform of size 15.

Table 1. Computational complexity of different algorithms. DCA, FAS,
ADD, and MUL indicate direct computation, fast algorithm, number of
additions, and number of multiplications, respectively.

DCA FAS for N = p1p2 - - - pm,
ADD | (N -1)N Sii(pi—1)N
MUL N2 S N

V. DISCUSSION AND CONCLUSION

We remark that the proposed Jacket matrices F,, of order n
can be used for the construction of error-correcting detection
codes or error-correction codes. Consider a pair of n-symbol
blocks fi = (fi1, fi2, -, fin) and fo = (fa1, fo2," -, fon)s
which are any two rows of the yield matrix F,, of length n. The
Hamming distance between two blocks f; and fo, called the
code word, is the number of coordinates in which the two blocks
differ, i.e.,

du(f1, f2) = du(fz, f1)
= {ilf1i # f1,i =0,1,--,n = 1}].

Let C be the set {f;|1 < i < c¢}. The minimum distance, de-
noted d., of C' is the minimum Hamming distance between all
distinct pairs of code words in C. Undetectable errors are those
that cause the transmitted code word to look like another code
word. A transmitted code word is guaranteed to differ in at least
d. coordinates from any other code word. For an error to be un-
detectable, it must change the symbol values in the transmitted
code words in at least d. coordinates. A code C' with minimum
distance d. can detect all errors of weight less than or equal to
de — 1. We say that it has error-detection ability d. and error-
correction ability ¢ = (d. — 1)/2.

Based on the Jacket matrix F,,, we select a set that has
the maximum number of rows such that it has the minimum
Hamming distance d.. We say that this matrix F,, has error-
correcting ability ¢ = (d. — 1)/2. Using our fast construc-
tion of the Jacket matrix F,,, we can construct a suitable error-
correction code. This shows one advantage of our approach: It

(37

can be used for the construction of codes for error correction.

In conclusion, we have developed fast algorithms for M-
dimensional DFT matrices by combining the GPFA with fast
Jacket transforms. Using these methods, we can easily decom-
pose and construct M -dimensional DFT matrices in Kronecker
product form of identity matrices and successive coprime-order
DFT matrices. Compared with direct computation, our algo-
rithms decrease the computational complexity, and they can be
applied to, for example, encoding, sequence signal processing,
and information theory.
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