• 제목/요약/키워드: recommendation algorithm

검색결과 417건 처리시간 0.031초

NLP를 이용한 카페 추천 알고리즘 (Cafe recommendation algorithm using NLP)

  • 목다현;변규린;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.404-406
    • /
    • 2023
  • 본 논문은 맞춤형 카페 추천 서비스를 제안한다. 대중적인 포털 사이트의 카페 정보와 사용자 리뷰를 크롤링 하여 지역별, 키워드별 카페 데이터를 수집한다. 사용자가 원하는 지역과 임의의 키워드를 기준으로 데이터셋 내의 키워드와 비교하여 가장 유사한 키워드를 추출한다. spaCy 라이브러리의사전 학습된 모델 중 similarity method를 사용하여 추출된 키워드를 바탕으로 해당하는 카페를 추천한다. 이를 통해 사용자는 불필요한 정보를 걸러내고 쉽게 원하는 정보를 얻을 수 있다.

딥러닝 기반의 MBTI 직업 추천 알고리즘 설계 (Design of MBTI Job Recommendation Algorithm Based on Deep Learning)

  • 김준겸;조영복
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.13-15
    • /
    • 2023
  • 본 논문에서는 성격, 성향을 근거로 사람의 성향에 따른 직업 및 전공에 대한 만족도를 분류한 데이터셋을 구축하여 사전에 사용자의 성향을 파악하여 직업을 추천하는 알고리즘을 제안한다. 성격유형검사 뿐만이 아닌 최근 게시한 SNS 텍스트를 사전에 학습한 데이터셋에 적용해 성격유형 결과의 정확도를 상승시키고자 한다. 사전에 생성한 데이터셋 외에 대상자가 작성한 정보(직업, 전공, 직엄 및 전공에 대한 만족도)로 연합학습을 진행하여 데이터셋의 정확도를 향상시키고자 한다. 모델의 학습 및 분류의 정확도 향상을 위해 SVM, NB, KNN, SDG 알고리즘들을 비교하였고 각각 67%, 21%, 28%, 69%의 정확도를 도출하였다. 데이터 셋은 캐글에서 제공받았다.

  • PDF

Blockchain-Enabled Decentralized Clustering for Enhanced Decision Support in the Coffee Supply Chain

  • Keo Ratanak;Muhammad Firdaus;Kyung-Hyune Rhee
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.260-263
    • /
    • 2023
  • Considering the growth of blockchain technology, the research aims to transform the efficiency of recommending optimal coffee suppliers within the complex supply chain network. This transformation relies on the extraction of vital transactional data and insights from stakeholders, facilitated by the dynamic interaction between the application interface (e.g., Rest API) and the blockchain network. These extracted data are then subjected to advanced data processing techniques and harnessed through machine learning methodologies to establish a robust recommendation system. This innovative approach seeks to empower users with informed decision-making abilities, thereby enhancing operational efficiency in identifying the most suitable coffee supplier for each customer. Furthermore, the research employs data visualization techniques to illustrate intricate clustering patterns generated by the K-Means algorithm, providing a visual dimension to the study's evaluation.

유비쿼터스 환경에서 사용자 위치 기반의 개인화된 서비스 추천 알고리즘 (A Recommendation Algorithm for the Personalized Service Based on User Location in Ubiquitous Environments)

  • 최정환;장현수;엄영익
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.436-439
    • /
    • 2007
  • 추천 서비스는 사용자에게 적합한 서비스를 선응적으로 제공하는 기술로써, 전자상거래 환경을 중심으로 널리 이용되고 있다. 그러나, 유비쿼터스 환경에서도 가장 활발한 기술 접목이 이루어지는 홈 네트워크 환경 내에 추천 서비스가 적용된 사례는 많지 않다. 본 논문에서는 홈 네트워크 환경에서 누적된 사용자와 기기 간 상호작용 정보들을 바탕으로 사용자 위치 기반의 개인화된 서비스를 추천하는 알고리즘을 제안한다. 본 알고리즘에서는 밀도기반 초기값 선정 기법을 적용한 군집화를 통해 필요한 데이터만을 추출함으로써 서비스 추천의 효율성 및 정확성을 높인다. 또한, 사용자 기반의 협업 필터링을 이용하여 데이터가 충분히 많지 않은 상황에서도 정확한 서비스 추천을 수행한다.

구조적 공백과 협업필터링을 이용한 추천시스템 (Recommender Systems using Structural Hole and Collaborative Filtering)

  • 김민건;김경재
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.107-120
    • /
    • 2014
  • 본 연구에서는 사회연결망분석기법 중 하나인 구조적 공백 분석 결과를 이용하여 추천과정에 사용자의 정성적이고 감성적인 정보를 반영할 수 있는 협업필터링 기반의 추천시스템을 제안한다. 협업필터링은 추천기술 중 가장 많이 활용되고 있지만 전통적으로 확장성과 희박성 등의 문제점뿐 만 아니라 사용자-상품 매트릭스의 선호도만을 이용하여 추천을 함으로써 사용자의 정성적이고 감성적인 정보를 추천과정에 반영하지 못한다는 한계점이 있다. 본 연구에서 제안하는 추천시스템은 사회연결망분석에서 중심성 분석과 함께 연결망 내의 주요개체를 탐지할 수 있는 구조적 공백 분석을 이용하여 연결망 내의 대표 사용자들을 추출한 후 이들을 중심으로 군집을 형성한 후 각 군집색인 협업필터링을 수행하는 과정을 통해 전통적인 협업필터링에서 반영하지 못했던 정성적, 감성적 정보를 반영한다. 한편, 군집색인 협업필터링을 수행함으로써 추천의 효율성을 높일 수 있는 장점도 있다. 본 연구에서는 실제 사용자들의 상품에 대한 선호도 평가점수와 사용자들의 사회연결망 정보를 수집하여 실험을 수행하고 전통적인 협업필터링과 다양한 형태의 협업필터링과의 추천성과 비교를 통하여 제안하는 시스템의 유용성을 확인한다. 비교모형으로는 전통적인 협업필터링, 임의 군집색인 기반 협업필터링, k평균 군집색인 기반 협업필터링을 이용한 추천시스템이며, 실험 결과, 제안한 모형이 다른 비교모형에 비해 추천성과의 정확도가 가장 우수하였다. 추천성과의 차이에 대한 통계적 유의성 검정 결과, 제안 모형은 전통적인 협업필터링 기반의 추천시스템과는 통계적으로 유의한 성과 차이가 없었으나, 다른 두 모형에 대해서는 통계적으로 유의한 성과의 차이가 있는 것으로 나타났다.

BERT 기반 감성분석을 이용한 추천시스템 (Recommender system using BERT sentiment analysis)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.1-15
    • /
    • 2021
  • 추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.

이벤트와 관련된 주변 관광지 자동 추천 알고리즘 개발 (Automatic Recommendation of Nearby Tourist Attractions related to Events)

  • 안진현;임동혁
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.407-413
    • /
    • 2020
  • 관광객이 관광 도중에 각종 문화제, 전시회, 공연 등의 이벤트에 참여하는 경우가 있다. 관광객이 이벤트에 참여 후 다음 관광지를 결정하게 되는데, 관광지 정보를 얻을 수 있는 수단은 지도 서비스, 블로그와 같은 소셜네트워크서비스 등이 존재한다. 지도 서비스를 활용하면 관광객이 현재 위치한 장소 주변의 관광지를 쉽게 검색할 수 있다. 이는 위치 기반 관광지 추천으로 활용될 수 있다. 블로그 등은 관광지의 내용을 담고 있기 때문에 관광객이 이벤트의 내용과 관련된 관광지를 찾을 수 있다. 이는 내용 기반 관광지 추천으로 활용될 수 있다. 하지만, 위치 기반 추천의 경우 이벤트의 내용과 관련이 없이 단순히 가까운 관광지가 추천이 될 수 있고, 내용 기반 추천의 경우 거리가 먼 관광지가 추천이 될 수 있는 단점이 있다. 위치와 내용을 모두 고려하는 관광지 추천 서비스는 거의 없다. 본 연구에서는 두 가지 방법의 장점만을 취하기 위해 한국관광공사 LOD(Linked Open Data), 위키피디아, 국어사전 등에 기반하여 위치와 내용을 모두 고려한 관광지 추천 알고리즘을 제시한다. 관광지의 설명글로부터 명사들을 추출한 뒤 다른 관광지의 명사들과 비교를 하여 동일한 명사가 많이 있을수록 내용이 관련이 있다고 판단한다. 정확히 동일한 명사가 없어도 위키피디아에 있는 키워드를 활용하여 관련된 명사가 존재할 경우에도 관련이 있다고 판단한다. 각 관광지의 위도와 경도를 기준으로 거리를 계산한 뒤 사용자가 선택한 가중치로 상기 내용 기반 관련도와 선형결합하여 추천순위를 계산한다.

항차 데이터 기반 간이 연료 소모량 추정 및 최적 경유 항구 추천 시스템 개발 (A Development of Simple Fuel Consumption Estimation and Optimized Route Recommendation System based on Voyage Data of Vessel)

  • 우상민;황훈규;김배성;우윤태;이장세
    • 한국정보통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.480-490
    • /
    • 2018
  • 최근, 유럽 연합 가입국을 기항지로 항해하는 선박을 대상으로 배출 가스를 측정한 후, 그 결과를 보고하고 검증받는 MRV 규제의 시행을 앞두고 있다. 이러한 배출 가스량을 경험적으로 산정해보기 위하여 본 논문에서는 간이 연료 소모량 추정 및 최적 경유 항구 추천 시스템을 개발하기 위한 내용을 다룬다. 이를 위해 10여 년간 축적된 선박의 항차 데이터를 기반으로 각 항구별 연료 소모량, 거리, 소요 시간을 분석하여, 이를 기반으로 연료 소모량을 추정하는 모듈을 개발하였다. 또한 선박의 출발지와 목적지 사이의 최적 경유 항구를 추천하기 위한 기능을 비롯하여 실제 운항 경로 표시 기능, 실제 운항 경로와 최적 경로와의 비교 기능, 사용자 지정 경유 항구 선택 기능을 제공하기 위한 모듈을 구현하였다. 개발한 시스템은 선박의 운항 계획 등을 위한 참고 지표로 활용이 가능할 것으로 기대되며, 축적된 데이터를 기반으로 학습하여 미래 데이터를 예측하기 위한 선행 연구로서 의미가 있을 것으로 판단된다.

빅데이터에 대한 Completeness를 이용한 빈발 패턴 마이닝 (Frequent Pattern Mining By using a Completeness for BigData)

  • 박인규
    • 한국게임학회 논문지
    • /
    • 제18권2호
    • /
    • pp.121-130
    • /
    • 2018
  • 대부분의 빈발 패턴은 패턴이 트랜잭션 데이터베이스에 나타나는 support를 패턴 interestingness의 핵심 척도로 다루어 왔으나 패턴의 횟수는 패턴의 completeness가 가지는 정보를 최대치로 가정하고 있다. 그러나 실제적으로는 임의의 패턴 X의 completeness는 트랜잭션에서 서로 다르게 나타나기 마련이다. 따라서 패턴이 가지는 정보의 손실을 줄이기 위해서는 가중치에 의한 support와 completeness에 의한 유용한 패턴 마이닝을 고려하여야 한다. 즉, 높은 completeness율을 갖는 패턴은 더 높은 recall로 이어질 수 있고 높은 빈도수를 갖는 패턴은 보다 높은 정밀도로 이어진다. 본 논문에서는 동적인 항목들의 가중치에 따른 적응된 support와 completeness를 고려하는 WSCFPM 패턴 마이닝 알고리즘을 제안한다. 제안한 방법은 모노톤 또는 반 모노톤 속성이 가중치에 의한 support와 completeness에 영향을 미치지 않기 때문에 탐색과정을 줄일 수 있다. 실험결과를 통하여 제안된 알고리즘이 효과적이며 확장성이 좋은 것임을 보인다.

모바일 환경에서의 XML 문서 디지털 서명 시스템 (XML Digital signature System based on Mobile Environment)

  • 학일명;홍현우;이성현;이재승;정희경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.701-704
    • /
    • 2007
  • 최근 모바일 단말기를 통하여 휴대폰 결제, 계좌 이체, 주식 투자 등의 금융서비스를 이용하는 사용자가 증가하고 있다. 모바일 전자상거래에서 데이터는 XML 문서형태로 전송, 교환되고 있다. 그러나 XML 문서는 해킹이나 악성코드로 공격받게 될 경우 일반적인 XML 문서만으로는 전자상거래의 보안요구를 만족시키기 어렵다. 특히 현재 국내에서 개발된 WIPI(Wireless Internet Platform for Interoperability)의 경우, 개방적인 플랫폼으로서 집중적인 공격에 대비해야 할 필요성이 있다. 이에 본 논문에서는 모바일 환경에서 XML 문서의 디지털 서명에 관련한 W3C 권고안의 요구사항에 따라 기존의 RSA(Rivest Shamir Adleman), DSA(Digital Signature Algorithm), KCDSA(Korean certificate Digital Signature Algorithm) 및 HMAC(Hash Message Authentication Code) 알고리즘을 사용하여 모바일 환경에서의 XML 문서 디지털 서명 시스템을 설계 및 구현하였다. 본 시스템은 국내 무선 인터넷 표준인 WIPI 플랫폼에서 테스트를 진행하였다.

  • PDF