DOI QR코드

DOI QR Code

Recommender Systems using Structural Hole and Collaborative Filtering

구조적 공백과 협업필터링을 이용한 추천시스템

  • Kim, Mingun (Department of Management Information Systems, Graduate School, Dongguk University) ;
  • Kim, Kyoung-Jae (Business School, Dongguk University)
  • 김민건 (동국대학교_서울 일반대학원 경영정보학과) ;
  • 김경재 (동국대학교_서울 경영대학 경영학부)
  • Received : 2014.11.10
  • Accepted : 2014.12.10
  • Published : 2014.12.30

Abstract

This study proposes a novel recommender system using the structural hole analysis to reflect qualitative and emotional information in recommendation process. Although collaborative filtering (CF) is known as the most popular recommendation algorithm, it has some limitations including scalability and sparsity problems. The scalability problem arises when the volume of users and items become quite large. It means that CF cannot scale up due to large computation time for finding neighbors from the user-item matrix as the number of users and items increases in real-world e-commerce sites. Sparsity is a common problem of most recommender systems due to the fact that users generally evaluate only a small portion of the whole items. In addition, the cold-start problem is the special case of the sparsity problem when users or items newly added to the system with no ratings at all. When the user's preference evaluation data is sparse, two users or items are unlikely to have common ratings, and finally, CF will predict ratings using a very limited number of similar users. Moreover, it may produces biased recommendations because similarity weights may be estimated using only a small portion of rating data. In this study, we suggest a novel limitation of the conventional CF. The limitation is that CF does not consider qualitative and emotional information about users in the recommendation process because it only utilizes user's preference scores of the user-item matrix. To address this novel limitation, this study proposes cluster-indexing CF model with the structural hole analysis for recommendations. In general, the structural hole means a location which connects two separate actors without any redundant connections in the network. The actor who occupies the structural hole can easily access to non-redundant, various and fresh information. Therefore, the actor who occupies the structural hole may be a important person in the focal network and he or she may be the representative person in the focal subgroup in the network. Thus, his or her characteristics may represent the general characteristics of the users in the focal subgroup. In this sense, we can distinguish friends and strangers of the focal user utilizing the structural hole analysis. This study uses the structural hole analysis to select structural holes in subgroups as an initial seeds for a cluster analysis. First, we gather data about users' preference ratings for items and their social network information. For gathering research data, we develop a data collection system. Then, we perform structural hole analysis and find structural holes of social network. Next, we use these structural holes as cluster centroids for the clustering algorithm. Finally, this study makes recommendations using CF within user's cluster, and compare the recommendation performances of comparative models. For implementing experiments of the proposed model, we composite the experimental results from two experiments. The first experiment is the structural hole analysis. For the first one, this study employs a software package for the analysis of social network data - UCINET version 6. The second one is for performing modified clustering, and CF using the result of the cluster analysis. We develop an experimental system using VBA (Visual Basic for Application) of Microsoft Excel 2007 for the second one. This study designs to analyzing clustering based on a novel similarity measure - Pearson correlation between user preference rating vectors for the modified clustering experiment. In addition, this study uses 'all-but-one' approach for the CF experiment. In order to validate the effectiveness of our proposed model, we apply three comparative types of CF models to the same dataset. The experimental results show that the proposed model outperforms the other comparative models. In especial, the proposed model significantly performs better than two comparative modes with the cluster analysis from the statistical significance test. However, the difference between the proposed model and the naive model does not have statistical significance.

본 연구에서는 사회연결망분석기법 중 하나인 구조적 공백 분석 결과를 이용하여 추천과정에 사용자의 정성적이고 감성적인 정보를 반영할 수 있는 협업필터링 기반의 추천시스템을 제안한다. 협업필터링은 추천기술 중 가장 많이 활용되고 있지만 전통적으로 확장성과 희박성 등의 문제점뿐 만 아니라 사용자-상품 매트릭스의 선호도만을 이용하여 추천을 함으로써 사용자의 정성적이고 감성적인 정보를 추천과정에 반영하지 못한다는 한계점이 있다. 본 연구에서 제안하는 추천시스템은 사회연결망분석에서 중심성 분석과 함께 연결망 내의 주요개체를 탐지할 수 있는 구조적 공백 분석을 이용하여 연결망 내의 대표 사용자들을 추출한 후 이들을 중심으로 군집을 형성한 후 각 군집색인 협업필터링을 수행하는 과정을 통해 전통적인 협업필터링에서 반영하지 못했던 정성적, 감성적 정보를 반영한다. 한편, 군집색인 협업필터링을 수행함으로써 추천의 효율성을 높일 수 있는 장점도 있다. 본 연구에서는 실제 사용자들의 상품에 대한 선호도 평가점수와 사용자들의 사회연결망 정보를 수집하여 실험을 수행하고 전통적인 협업필터링과 다양한 형태의 협업필터링과의 추천성과 비교를 통하여 제안하는 시스템의 유용성을 확인한다. 비교모형으로는 전통적인 협업필터링, 임의 군집색인 기반 협업필터링, k평균 군집색인 기반 협업필터링을 이용한 추천시스템이며, 실험 결과, 제안한 모형이 다른 비교모형에 비해 추천성과의 정확도가 가장 우수하였다. 추천성과의 차이에 대한 통계적 유의성 검정 결과, 제안 모형은 전통적인 협업필터링 기반의 추천시스템과는 통계적으로 유의한 성과 차이가 없었으나, 다른 두 모형에 대해서는 통계적으로 유의한 성과의 차이가 있는 것으로 나타났다.

Keywords

References

  1. Bonacich, P., "Power and centrality : a family of measures," American Journal of Sociology, Vol.92, No.5(1987), 1170-1182. https://doi.org/10.1086/228631
  2. Breese, J. S., D. Heckerman, and C. Kadie, "Empirical analysis of predictive algorithms for collaborative filtering," Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, (1998), 43-52.
  3. Burt, R. S., "Structural Holes:The Social Structure of Competition," Harvard University Press, Cambridge MA, 1992.
  4. Cho, Y. and J. Bang, "Social network analysis for new product recommendation," Journal of Intelligence and Information Systems, Vol.15, No.4(2009), 183-200.
  5. Cho, Y. and J. Bang, "Applying centrality analysis to solve the cold-start and sparsity problems in collaborative filtering," Journal of Intelligence and Information Systems, Vol.17, No.3(2011), 99-114.
  6. Debnath, S., N. Granguly, and P. Mitra, "Feature weighting in content based recommendation system using social network analysis," Proceedings of the 17th international conference on World Wide Web, (2008), 1041-1042.
  7. Golbeck, J., "Generating predictive movie recommendations from trust in social networks," Proceedings of the 4th International Conference on Trust Management, Lecture Notes in Computer Science, Vol.3986(2006), 93-104.
  8. Goldberg, K., T. Roeder, D. Gupta, and C. Perkins, "Eigentaste: a constant time collaborative filtering algorithm," Information Retrieval, Vol.4, No.2(2001), 133-151. https://doi.org/10.1023/A:1011419012209
  9. Wang, J.-C. and C.-C. Chiu, "Recommending trusted online auction sellers using social network analysis," Expert Systems with Applications, Vol.34, No.3(2008), 1666-1679. https://doi.org/10.1016/j.eswa.2007.01.045
  10. Hyun, Y. S., E. K. Shin, and H. R. Lee, "The roles of trust and broker at structural holes in multi-cultural learning community," The Korean Journal of Lifelong Education, Vol. 17, No. 2(2011), 1-31.
  11. Kang, B.-S., "A novel web recommendation method for new customers using structural holes in social networks," Journal of Industrial Economics and Business, Vol.23, No.5(2010), 2371-2385.
  12. Kang, B.-S., "Structural holes method in social netwoks for new product recommendations," Journal of the Korean Data Analysis Society, Vol.13, No.3(B)(2011), 1365-1377.
  13. Oinas-Kukkonen, H., K. Lyytinen, and Y. Yoo, "Social networks and information systems: ongoing and future research streams," Journal of the Association for Information Systems, Vol.11, No.2(2010), 61-68. https://doi.org/10.17705/1jais.00222
  14. Kim, K.-j. and H. Ahn, "Hybrid recommender systems using cluster-indexing collaborative filtering and social network analysis," Proceedings of the 2010 Fall Conference of the Korean Society of Management Information Systems, (2010), 604-609.
  15. Kim, K.-j. and Y. Kim, "Recommender system using implicit trust-enhanced collaborative filtering," Journal of Intelligence and Information Systems, Vol.19, No.4(2013), 1-10. https://doi.org/10.13088/jiis.2013.19.4.001
  16. Kim, Y. H., Social Network Analysis, Parkyoungsa Publishing, 2007.
  17. Liu, F. and H. J. Lee, "Use of social network information to enhance collaborative filtering performance," Expert Systems with Applications, Vol.37, No.7(2010), 4772-4778. https://doi.org/10.1016/j.eswa.2009.12.061
  18. Park, J. H., Y. H. Cho, and J. K. Kim, "Social network : a novel approach to new customer recommendations," Journal of Intelligence and Information Systems, Vol.15, No.1(2009), 123-140.
  19. Rodan, S. and C. Galunic, "More than network structure:how knowledge heterogeneity influences managerial performance and innovativeness," Strategic Management Journal, Vol.25, No.6 (2004), 541- 562. https://doi.org/10.1002/smj.398
  20. Rodan, S., "Structural holes and managerial performanc e:identifying the underlying mechanisms," Social Networks, Vol.32, No.3(2010), 168-179. https://doi.org/10.1016/j.socnet.2009.11.002
  21. Sarwar, B. M., J. A. Konstan, A. Borchers, J. Herlocker, B. Miller, and J. Riedl, "Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system," Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work(CSCW), (1998), 345-354.
  22. Shinha, R., and K. Swearingen, "Comparing recommendations made by online systems and friends," Proceedings of the DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries, (2001), Dublin, Ireland.
  23. Sohn, D. W., Social Network Analysis, Kyungmunsa Publishing, 2002.
  24. Yang, W.-S. and J.-B. Dia, "Discovering cohesive subgroups from social networks for targeted advertising," Expert Systems with Applications, Vol.34, No.3(2008), 2029-2038. https://doi.org/10.1016/j.eswa.2007.02.028

Cited by

  1. Enhancing Predictive Accuracy of Collaborative Filtering Algorithms using the Network Analysis of Trust Relationship among Users vol.22, pp.3, 2016, https://doi.org/10.13088/jiis.2016.22.3.113
  2. Recommender systems using cluster-indexing collaborative filtering and social data analytics vol.55, pp.17, 2017, https://doi.org/10.1080/00207543.2017.1287443
  3. A Collaborative Filtering System Combined with Users' Review Mining : Application to the Recommendation of Smartphone Apps vol.21, pp.2, 2015, https://doi.org/10.13088/jiis.2015.21.2.01
  4. 콘텐츠들 간의 유의어 태그매핑을 이용한 확장된 추천기법의 연구 vol.66, pp.1, 2014, https://doi.org/10.5370/kiee.2017.66.1.82
  5. 사용자 간 신뢰·불신 관계 네트워크 분석 기반 추천 알고리즘에 관한 연구 vol.24, pp.1, 2014, https://doi.org/10.21219/jitam.2017.24.1.169
  6. Design and Implementation of Collaborative Filtering Application System using Apache Mahout -Focusing on Movie Recommendation System- vol.22, pp.7, 2014, https://doi.org/10.9708/jksci.2017.22.07.125
  7. 협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템 vol.23, pp.4, 2014, https://doi.org/10.13088/jiis.2017.23.4.077
  8. 사회연결망 분석을 활용한 연관규칙 확장기법 vol.23, pp.4, 2014, https://doi.org/10.13088/jiis.2017.23.4.111
  9. Design and Implementation of a User-based Collaborative Filtering Application using Apache Mahout - based on MongoDB - vol.23, pp.4, 2014, https://doi.org/10.9708/jksci.2018.23.04.089
  10. 종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템 vol.24, pp.2, 2018, https://doi.org/10.13088/jiis.2018.24.2.085
  11. A Hybrid Collaborative Filtering-based Product Recommender System using Search Keywords vol.26, pp.1, 2014, https://doi.org/10.13088/jiis.2020.26.1.151
  12. Improvement of a Product Recommendation Model using Customers' Search Patterns and Product Details vol.26, pp.1, 2021, https://doi.org/10.9708/jksci.2021.26.01.265
  13. 네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구 vol.27, pp.1, 2021, https://doi.org/10.13088/jiis.2021.27.1.023
  14. 네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구 vol.27, pp.1, 2021, https://doi.org/10.13088/jiis.2021.27.1.023
  15. 키워드 네트워크 분석을 활용한 지식은폐 연구동향 분석 vol.22, pp.1, 2014, https://doi.org/10.15813/kmr.2021.22.1.011