• Title/Summary/Keyword: reclaimed water

Search Result 393, Processing Time 0.03 seconds

Feasibility Study of Natural Systems for Sewage Treatment and Agricultural Reuse (자연정화방법에 의한 오수처리와 농업적 재이용 타당성 검토)

  • 윤춘경;정광욱;함종화;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.194-206
    • /
    • 2003
  • A pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent to agricultural reuse of reclaimed water. The constructed wetland and pond system was installed in Konkuk University and the effluent from septic tank of school building was used as an influent to the wetland system. The effluent of the wetland was used as an influent to pond systems. The influent concentrations of total coliform(TC), fecal coliform (FC), and E. coli were about $10^5$MPN/100 ml, and they were reduced to less than 10,000 MPN/100 ml on average after wetland treatments, showing over 95 % removal. And they were further reduced to less than 1,000 MPN/100 ml in average, showing over 85∼93 % removal after pond treatment. Turbidity and SS were improved effectively on average and their pond effluent concentration was about 4.5 NTU and 9.8 mg/L in average, respectively Average $BOD^5$ concentrations were also reduced substantially to 9.3 mg/L with about 83 % removal rate after wetland and pond treatment systems. Nutrients removal was relatively low and removal rate for T-N and T-P was less than 43 and 44%, respectively after wetland and pond treatment. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water. This paper describes a preliminary result Iron pilot study and further investigations are recommended on the optimum design parameters before full scale application.

Interpretation of Soft Ground Deformation under Embankment using the Electrical Resistivity Survey (전기비저항탐사를 이용한 성토하부 연약지반의 변형 해석)

  • Kim, Jae-Hong;Hong, Won-Pyo;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Soil deformations such as settlement, heaving and lateral flow have frequently happened on marine reclaimed soft grounds due to embankment filling or banking. The electrical resistivity survey was applied to investigate on ground surface such soil deformation without disturbance of ground. A test embankment was performed to assess soil deformation in marine reclaimed soft grounds, where was located at Sihwa area in western coast of Korean peninsula. The soft ground was composed of clayey sediments. After embankment filling, the boundary of soil deformation affected by the filling could be investigated with application of the electrical resistivity survey. The result of electric resistivity survey shows that the extent of deformation is about 5 m laterally to the southern direction of embankment and about 5~6 m vertically in depth, which is about 1-1.2 times of embankment height. This shows that the electric resistivity survey can be applied to interpret the ground deformation in a soft ground region.

Performance evaluation of a subsurface drainage culvert system in converted paddy fields

  • Do, Jong Won;Park, Jongseok;Kim, Hyuntai;Lee, Kwangya;Shin, Hyungjin
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.263-273
    • /
    • 2020
  • With the change of the agricultural environment (increased rice production, decreased rice consumption, and rice production policies), converting paddy fields into upland fields is an increasing trend. In terms of conversion into upland fields, subsurface drainage is one of the most important factors for good field crop growth. This study evaluates the performance of a subsurface drainage culvert system in paddy fields and reclaimed lands. The obtained results are briefly summarized as follows: 1) After a comparative evaluation of several subsurface drainage culvert systems, including excavated subsurface drainage and non-excavated subsurface drainage types, type 3 (non-excavated, perforated drain pipe 50 mm, filter mat B50 cm, subsoiling 70 cm and culvert spacing 5 m) shows relatively high values among four types in terms of effectiveness (subsurface discharge capability) and economic efficiency (construction cost). 2) Type 3 has proven that it is suitable for design standards of discharge capacity through field tests performed in paddy fields (three sites: Gong-geom, Gae-san, Juk-san) and reclaimed lands (two sites: Gum-ho, Mi-am). 3) In the experiment of Sesamum indicum growth according to the existence of a drainage system, Sesamum indicum growth with a subsurface drainage culvert system had good value in terms of plant shoot and root length, shoot fresh and dry weight, and root fresh and dry weight).

Experimental Study on Engineering Characteristic of the Waste Landfill Soil Admixed Linear (폐기물매립지 토사계 혼합 차수재의 공학적 특성에 대한 실험적 연구)

  • Chang, Yongchai;Kim, Jinchun;Jeong, Ogki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Leachates resulting from the waste landfill of waste can possibly cause the second pollution, such as the underground water and environmental pollution. Accordingly, Liner layer has been installed in the reclaimed land of waste to block and purify permeation water to and prevent this second pollution. The material used as Liner layer should have water resistance and be less than permeability coefficient of $1{\times}10^{-7}$ cm/sec. As it is very difficult to get this kind of natural clay with low permeability around the field, the suitable way to get the low permeable material is to use blend with good watertighness by mixing it with natural soil which is spread in the site. While this mixed soil, which can resist water, is commonly used in the site, namely, bentonite and MCG cementious mateiral mixed soil, which is widely used as Liner layer in the reclaimed land of waste, is recognized in Liner and durability. The study was performed to find the effect of additive of the bottom liner in the waste landfill. The aim of this paper is to explain of the field application examples as well as the data of experimental research with the engineering properties of Liner layer of the reclaimed land.

  • PDF

Roots Growth Characteristics of Zelkova serrata Makino. after Replanting in the Reclaimed Land from the Sea - On the Root Structure and Spatial Distribution of Fine Root Phytomass - (임해매립지의 느티나무 식재 이후 뿌리 생장특성 -뿌리구조 및 세근의 공간적 분포를 중심으로-)

  • Kim, Do-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.5
    • /
    • pp.46-55
    • /
    • 2007
  • This study was carried out to analyze both the root structure and the fine root phytomass of the vertical and horizontal distribution of Zelkova serrata Makino. which was transplanted in the reclaimed land from the sea in Gwangyang, Jeonnam, South Korea. The base ground was reclaimed land from the sea. $Z_1$ of the planting ground was filled to a $100{\sim}150cm$ thickness with the improved soil instead of the reclaimed soil from the sea, $Z_2$ of the planting ground was covered to a $20{\sim}30cm$ thickness with the improved soil and $Z_3$ of the planting ground was mounded to 120cm thickness with the improved soil on the reclaimed land from the sea. In addition, $Z_4,\;Z_5\;and\;Z_6$ of the planting grounds were at the large-sized mound on the reclaimed land from the sea. $Z_4$ of the planting ground was located at the lowest level, $Z_5$ planting ground was located at the slope and $Z_6$ planting ground was located at the top of the large-sized mound. The large-sized mounds contain 3 layers, the base layer was reclaimed land from the sea and the second layer was mounded to a $200{\sim}300cm$ thickness with the desalinized soil from the sea on the base layers and the finally layers were mounded to a $80{\sim}120cm$ thickness with improved soil on the second layer. The planting grounds $Z_3,\;Z_4,\;Z_5\;and\;Z_6$ developed roots such as tap roots, lateral roots and heart roots. However, in $Z_1\;and\;Z_2$ roots development were inhibited. The fine-root phytomass of the 6 planting ground types was as follows: $113.5g\;DM/m^2$ for $Z_5$, $105.5g\;DM/m^2$ for $Z_4$, $88.3g\;DM/m^2$ for $Z_3$, $81.0g\;DM/m^2$ for $Z_6$, $73.0g\;DM/m^2$ for $Z_2$, $43.3g\;DM/m^2$ for $Z_1$. The vertical distribution of the fine root phytomass decreased from the upper to the deeper soil profiles in the 6 mound types. The fine root phytomass was $43.3{\sim}71.8%$ in a $0{\sim}20cm$ thickness of soil layer and it decreased according to the distance from the nearest trees. The root growth in the improved soil was better than in the reclaimed soil from the sea. However, root growth decreased more in the disturbed soils even though the planting grounds contained the improved soils. The retarded development of roots and the spatial distribution patterns of the fine root phytomass were closely connected to the reclaimed soil from the sea. In the disturbed soil, the soil hardness and alkalic cation($Na^+,\;K^+,\;Ca^{2+},\;Mg^{2+}$). were high and the soil water was lacking. We suggest that the construction of planting grounds and the improvement of bad soil are necessary for the proper and effective growth of landscaping plants.

Effect of Gypsum Application on Reducing Methane (CH4) Emission in a Reclaimed Coastal Paddy Soil (간척지 논 토양 개량제로서 석고처리가 메탄 배출량 저감에 미치는 영향)

  • Lim, Chang-Hyun;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.243-251
    • /
    • 2011
  • BACKGROUND: Gypsum($CaSO_4{\cdot}2H_2O$) is known as an ideal amendment to improve soil quality of the reclaimed coastal land. Since gypsum has very high concentration of electron acceptor like ${SO_4}^{2-}$, its application might be effective on reducing $CH_4$ emission during rice cultivation, but its effect has not been studied well. METHODS AND RESULTS: The effect of gypsum on $CH_4$ emission and rice growth characteristics was studied by pot test, which was packed by reclaimed paddy soils collected from Galsa, Hadong, Gyeongnam province. Chemical-grade gypsum was applied in two soils having EC 2.25 and 9.48 dS/m at rates of 0, 0.5, 1.0 and 2.0%(wt/wt). $CH_4$ emission was characterized a week interval by closed chamber method during rice cultivation. $CH_4$ emission rate was significantly decreased with increasing salt accumulation and gypsum application levels. With increasing gypsum application, dissolved ${SO_4}^{2-}$ concentration in the leachate water was significantly increased, which might have suppressed $CH_4$ production in soil. Total $CH_4$ flux was dramatically decreased with increasing gypsum application. In contrast, rice yield was increased with increasing gypsum application and then achieved maximum productivity at 1.0% gypsum application in two soils. CONCLUSION(s): Gypsum is a very good soil amendment to suppress $CH_4$ emission in reclaimed coastal paddy soils, and improve rice productivity and soil properties. The optimum application level of gypsum is assumed at ca. 1% to improve soil productivity with reducing effectively $CH_4$ emission during rice cultivation.

Chemical Components of Water Samples at Rice Paddy Field in Saemangeum Reclaimed Tidal Land (새만금 간척예정지 수도작 지대에서 수질시료중 화학성분의 함량변화)

  • Cho, Jae-Young;Choi, Jin-Kyu;Son, Jae-Kwon;Koo, Ja-Woong;Han, Kang-Wan;Song, Jae-Do
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.619-622
    • /
    • 2003
  • The concentrations of nutrients in precipitation increased slightly from May to June and did not change afterwards. Regarding irrigation water, the nutrient concentrations were high in the early stage of rice growth but decreased during the period of mid-June to mid-July. The concentration of Tot-N in runoff water increased significantly during the period of fertilizer application (basal, tillering, and panicle fertilization) and then decreased. The concentrations of Tot-N in runoff water ranged from 0.4 to 39.8mg/L (average of 5.9mg/L). The concentration of Tot-P in runoff water ranged from 0.0004 to 0.2084mg/L (average of 0.055mg/L). The Tot-P concentrations were high only at the early stage of rice growth after fertilizer application and did not change afterwards.

  • PDF

Estimation of water quality distribution in freshing reservoir by satellite images

  • Torii, Kiyoshi;You, Jenn-Ming;Chiba, Satoshi;Cheng, Ke-Sheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1227-1229
    • /
    • 2003
  • Kojima Lake in Okayama prefecture is a freshing reservoir constructed adjacent to the oldest reclaimed land in Japan. This lake has a serious water quality problem because two urban rivers are flowing into it. In the present study, unsupervised classification was performed at intervals of several years using Landsat MSS data in the past 15 years. After geometric correction of these data, MSS data corresponding geographically to the field observation data were extracted and subjected to the multivariate analysis. Water quality distribution in the lake was estimated using the regression equation obtained as a result. In addition, two - dimensional and three-dimensional numerical simulations were performed and compared with the distribution obtained from the satellite images. Behavior of the reservoir flows is complicated and water quality distribution varies greatly with the flows. Here, I report the results of analysis on three factors, field observation, numerical simulation and satellite images.

  • PDF

Optimum Water Management Practices for Direct Seeding on Paddy Surface of Saline in Soils in Reclaimed Tidelands (서남부 간척지에서 토양염농도별 벼 담수표면직파 파종전.후 물관리방법)

  • Back, Nam-Hyun;Ko, Jong-Cheol;Nam, Jeong-Kwon;Kim, Bo-Kyeong;Park, Hong-Kyu;Kim, Sang-Su;Kim, Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.2
    • /
    • pp.204-207
    • /
    • 2007
  • This study was conducted to suggest proper water management practices after and before broadcasting of rice seed on flooded paddy surface at reclaimed saline soil with two different saline levels in Gyehwado Substation of Honam Agricultural Research Institute (HARI) NICS, RDA for two years from 2004 to 2005. The stable seedling stand in low saline soil of 0.1% salinity was obtained by one time of water exchange after soil rotary Whereas in medium saline soilof 0.3% salinity, three times of water exchange was required for the stable seedling stand. Milled rice yield was not affected by frequency of water exchange in low saline soil, while it decreased sharply in one and two times of water exchange compared with three times of water exchange in medium saline soil. Irrigation water immediately after direct seeding increased the number of seeding stand in low saline soil. With the increase in the interval of water exchange after direct seeding, the milled rice yield decreased. Although the continuous water flowing showed the most number of seedling stand and was increased milled rice yield compared with the others interval of water exchange in medium saline soil, the number of seedling stand and milled rice wasn't significantly different up to exchange of two days interval compared with the continuous water flowing.

A Study on Standardization Method Establishment of Multi Water-Loop System using Multi Water Resources (다중수원을 활용한 멀티워터 루프시스템의 표준화방안 구축에 관한 연구)

  • Lee, Hyundong;Lee, Joonhyung;Kwak, Pilljae
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.109-117
    • /
    • 2014
  • Multi water-loop system is the efficient customer centered facilities of water supply by utilizing the multi water resources. Multi water-loop system is divided into various types. The system is classified potable and non-potable type. Mostly, the potable type utilizes surface water and ground water. However, the non-potable type utilize the multi water resources, such as rain water, sea water, reclaimed water, etc. Selective intake is possible when characteristics of region, physiographic condition and purpose of use are considered. For instance, downtown type, new-city type, agriculture type, island type are available. For development and application of these multi water-loop system, standardization is needed. For standardization, several methods are given; design principles, selection and composition method of multi water-loop system structure, BIM/GIS application method, safety inspection method. Consequently, a road map of design standardization method can be established. In this road map, there are three parts for the standardization of multi water-loop system. Three parts are the considerations, base material and ways of standardization. Design standardization become close when this road map followed by someone who plan the multi water-loop system. In this way, loop system's development is more efficient and economic. In hereafter research, each type's characteristic will be analysed and standardization methods can be established.

  • PDF