References
- Ali, M.A., Lee, C.H., Kim, P.J., 2008. Effect of silicate fertilizer on reducing methane emission during rice cultivation. Biol. Fertil. Soils. 44, 597-604. https://doi.org/10.1007/s00374-007-0243-5
- Blake, D.R., Rowland, F.S., 1988. Continuing worldwide increase in tropospheric methane. Science. 239, 1129-1131. https://doi.org/10.1126/science.239.4844.1129
- Bronson, K.F., Mosier, A.R., 1991. Effect of encapsulated calcium carbide on dinitrogen, nitrous oxide, methane, and carbon dioxide emissions from flooded rice. Biol. Fert. Soils. 11, 116-120. https://doi.org/10.1007/BF00336375
- Denier Van der Gon, H.A.C., Neue, H.U., 1994. Impact of gypsum application on the methane emission from a wetland rice field. Global Biogeochem. Cycles. 8, 127-134. https://doi.org/10.1029/94GB00386
- Dickinson, R.E., Cicerone, R.J., 1986. Future global warming from atmospheric trace gases. Nature. 319, 109-114. https://doi.org/10.1038/319109a0
- Garica, J.L., Patel B.K.C., Ollivier, B., 2000. Taxonomic, phylogenetic and ecological diversity of methanogenic archaea. Anaerobe. 6, 205-226. https://doi.org/10.1006/anae.2000.0345
- Hori, K., Inubushi, K., Matsumoto, S., Wada, H., 1990. Competition for acetic acid between methane formation and sulfate reduction in paddy soil. Jpn. J. Soil Sci. Plant Nutr. 61, 572-578.
- Houghton, J.T., Callander, B.A., Varney, S.K., 1992. Intergovernmental Panel on Climatic Change (IPCC): Climate change. The supplementary report to the IPCC Scientific Assessment, pp. 1-200, Cambridge University Press, New York.
- Intergovernmental Panel on Climate Change (IPCC)., 2007. Climate Change 2007: The Physical Science Basis. Summary for Policymakers.
- IRRI(International Rice Research Institute)., 2009. Trends In the Rice Economy: Harvested area of rough rice, by country and geographical region-USDA.
- Jung, Y.S., Ryu, C.H., 2005. Soil problems and agricultural management of the reclaimed land. Korean Journal of Crop Science 60, 8-20.
- Lindau, C.W., Alford, D.P., Bollich, P.K., Linscombe, S.D., 1993. Inhibition of methane evolution by calcium sulfate addition to flooded rice. Plant and Soil. 158, 299-301.
- Marzzacco, C.J., 1998. The Effects of Salts and Nonelectrolytes on the Solubility of Potassium Bitartrate: An Introductory Chemistry Discovery Experiment. J. Chem. Educ. 75, 1628. https://doi.org/10.1021/ed075p1628
- Minami, K., Neue, H.U., 1994. Rice paddies as a methane source. Climate change. 27, 13-26. https://doi.org/10.1007/BF01098470
- Ranjan, M., Animita, B., Ujjanini, S., Bijay, K.D., Alak, K.M., 2009. Role of Alternative Electron Acceptors (AEA) to control methane flux from waterlogged paddy fields: Case studies in the southern part of West Bengal, India. International Journal of Greenhouse Gas Control. 3, 664-672. https://doi.org/10.1016/j.ijggc.2009.05.004
- Rodhe, H., 1990. Comparison of the contribution of various gases to the greenhouse effect. Science. 248, 1217-1219. https://doi.org/10.1126/science.248.4960.1217
- Rural Development Administration(RDA)., 1988. Methods of Soil Chemical Analysis. National Institute of Agricultural Science and Technology, RDA, Suwon.
- Rural Development Administration(RDA)., 1999. Fertilization standard of crop plants. National Institute of Agricultural Science and Technology, Suwon. pp. 148.
- Rolston, D.E., 1986. Gas flux, In: Klute A, (ed.) Methods of soil analysis, part 1, 2nd ed., Agron. Monogr. 9. Soil Sci Soc America and American Soc Agron. Madison, W1, pp. 1103-1119.
- SAS Institute., 1995. System for Windows Release 6.11. SAS Institute, Cary, NC.
- Singh, S., Singh, J.S., Kashyap, A.K., 1999. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol. Biochem. 31, 1219-1228. https://doi.org/10.1016/S0038-0717(99)00027-9
- Sposito, G., Mattigod, S.V., 1977. On the chemical foundation of the sodium adsorption ratio. Soil Sci. Soc. Am. J. 41, 323-329. https://doi.org/10.2136/sssaj1977.03615995004100020030x
- Takai, Y., 1961. Reduction and microbial metabolism in paddy soil (3) - in Japanese. Nogyo Gijutsu (Agricultural Technology). 16, 122-126.
- Van Breemen, N., Feijtel, T.C.J., 1990. Soil processes and properties involved in the production of greenhouse gases, with special relevance to soil taxonomic systems, In: Bouwan, A.F. (Ed.), Soils and greenhouse effect, Wiley, New York, pp. 195-223.
- Yagi, K., Chairoj, P., Tusuruta, H., Cholitkul, W., Minami, K., 1994. Methane emission from rice paddy fields in the central plain of Thailand. Soil Sci. Plant Nutrition, 40, 29-37. https://doi.org/10.1080/00380768.1994.10414275
Cited by
- Effect of Salt Concentration on Methane Emission in a Coastal Reclaimed Paddy Soil Condition: Pot Test vol.32, pp.4, 2013, https://doi.org/10.5338/KJEA.2013.32.4.252
- Effect of gypsum on exchangeable sodium percentage and electrical conductivity in the Daeho reclaimed tidal land soil in Korea—a field scale study 2016, https://doi.org/10.1007/s11368-016-1446-x
- Effect of By-Product Gypsum Fertilizer on Methane Gas Emissions and Rice Productivity in Paddy Field vol.49, pp.1, 2016, https://doi.org/10.7745/KJSSF.2016.49.1.030