• Title/Summary/Keyword: receiver-based rate control

Search Result 73, Processing Time 0.026 seconds

TCP-RLDM : Receiver-oriented Congestion Control by Differentiation for Congestion and Wireless Losses (TCP-RLDM: Congestion losses과 Wireless losses 구별을 통한 수신측 기반 혼잡제어 방안)

  • 노경택;이기영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.127-132
    • /
    • 2002
  • This paper aims to adjust the window size according to the network condition that the sender determines by making the receiver participating in the congestion levels. TCP-RLDM has the measurement-based transmission strategy based on the data-receiving rate complementing TCP with the property of Additive Increase / Multiplicative Decrease. The protocol can make an performance improvement by responding differently according to the property of errors-whether congestion losses or transient transmission errors - to confront dynamically in heterogeneous environments with wired or wireless networks and delay-sensitive or -tolerant applications. By collecting data-receiving rate and the cause of errors from the receiver and by enabling sender to use the congestion avoidance strategy before occuring congestion possibly, the protocol works well at variable network environments.

  • PDF

Joint Quality Control of VBR MPEG Video Programs (VBR MPEG 비디오 프로그램들의 결합 화질 제어)

  • 홍성훈;김성대
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.591-596
    • /
    • 1999
  • In this paper, we present a joint quality control system to be able to accurately control the relative picture quality among the video programs in terms of PSNR. The joint quality control system allows variable bit rate (VBR) for each video program to maintain the pre-determined relative picture quality among the aggregated video programs while keeping a constant sum of the bit rates for all programs to be transmitted over a single constant bit rate (CBR) channel. This is achieved by simultaneous controlling the video encoders to generate VBR video streams at the central controller. Furthermore we also suggest buffer regulation method based on the analysis of the constraints imposed by sender/receiver buffer sizes and total transmission rate. Through various simulation results, it is found that our quality control systems guarantee that the video buffers do not overflow and underflow and the quality control errors do not exceed 0.1 ㏈.

  • PDF

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

Blind adaptive receiver for uplink multiuser massive MIMO systems

  • Shin, Joonwoo;Seo, Bangwon
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • Herein, we consider uplink multiuser massive multiple-input multiple-output systems when multiple users transmit information symbols to a base station (BS) by applying simple space-time block coding (STBC). At the BS receiver, two detection filters for each user are used to detect the STBC information symbols. One of these filters is for odd-indexed symbols and the other for even-indexed symbols. Using constrained output variance metric minimization, we first derive a special relation between the closed-form optimal solutions for the two detection filters. Then, using the derived special relation, we propose a new blind adaptive algorithm for implementing the minimum output variance-based optimal filters. In the proposed adaptive algorithm, filter weight vectors are updated only in the region satisfying the special relation. Through a theoretical analysis of the convergence speed and a computer simulation, we demonstrate that the proposed scheme exhibits faster convergence speed and lower steady-state bit error rate than the conventional scheme.

Indoor Localization of a Mobile Robot Using External Sensor (외부 센서를 이용한 이동 로봇 실내 위치 추정)

  • Ko, Nak-Yong;Kim, Tae-Gyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.420-427
    • /
    • 2010
  • This paper describes a localization method based on Monte Carlo Localization approach for a mobile robot. The method uses range data which are measured from ultrasound transmitting beacons whose locations are given a priori. The ultrasound receiver on-board a robot detects the range from the beacons. The method requires several beacons, theoretically over three. The method proposes a sensor model for the range sensing based on statistical analysis of the sensor output. The experiment uses commercialized beacons and detector which are used for trilateration localization. The performance of the proposed method is verified through real implementation. Especially, it is shown that the performance of the localization degrades as the sensor update rate decreases compared with the MCL algorithm update rate. Though the method requires exact location of the beacons, it doesn't require geometrical map information of the environment. Also, it is applicable to estimation of the location of both the beacons and robot simultaneously.

Development of FPGA-based Meteorological Information Data Receiver Circuit for Low-Cost Meteorological Information Receiver System for COMS (보급형 천리안 위성 기상정보 수신시스템을 위한 FPGA 기반 기상정보 데이터 수신회로 개발)

  • Ryu, Sang-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2373-2379
    • /
    • 2015
  • COMS(Communication, Ocean and Meteorological Satellite), the first Korean geostationary meteorological satellite, provides free meteorological information through HRIT/LRIT(High/Low Rate Information Transmission) service. This work presents the development of data receiver circuit that is essential to the implementation of a low-cost meteorological information receiver system. The data receiver circuit processes the data units according to the specification of physical layer and data link layer of HRIT/LRIT service. For this purpose, the circuit consists of a Viterbi decoder, a sync. word detector, a derandomizer, a Reed-Solomon decoder and so on. The circuit also supports PCI express interface to pass the information data on to the host PC. The circuit was implemented on an FPGA(field programmable gate array) and its function was verified through simulations and hardware implementation.

Transmission Rate-Based Overhead Monitoring for Multimedia Streaming Optimization in Wireless Networks (무선 네트워크상에서 멀티미디어 스트리밍 최적화를 위한 전송율 기반의 오버헤드 모니터링)

  • Lee, Chong-Deuk
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.358-366
    • /
    • 2010
  • In the wireless network the congestion and delay occurs mainly when there are too many packets for the network to process or the sender transmits more packets than the receiver can accept. The congestion and delay is the reason of packet loss which degrades the performance of multimedia streaming. This paper proposes a novel transmission rate monitoring-based optimization mechanism to optimize packet loss and to improve QoS. The proposed scheme is based on the trade-off relationship between transmission rate monitoring and overhead monitoring. For this purpose this paper processes a source rate control-based optimization which optimizes congestion and delay. Performance evaluated RED, TFRC, and the proposed mechanism. The simulation results show that the proposed mechanism is more efficient than REC(Random Early Detection) mechanism and TFRC(TCP-friendly Rate Control) mechanism in packet loss rate, throughput rate, and average response rate.

Direct-band spread system for neural network with interference signal control (직접 대역 확산 시스템에서 신경망을 이용한 간섭 신호 제어)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1372-1377
    • /
    • 2013
  • In this Paper, a back propagation neural network learning algorithm based on the complex multilayer perceptron is represented for controling and detecting interference of the received signals in cellular mobile communication system. We proposed neural network adaptive correlator which has fast convergence rate and good performance with combining back propagation neural network and the receiver of cellular. We analyzed and proved that NNAC has lower bit error probability than that of traditional RAKE receiver through results of computer simulation in the presence of the tone and narrow-band interference and the co-channel interference.

Selective Quality Control of Multiple Video Programs for Digital Broadcasting Service (디지털 방송 서비스를 위한 다수의 비디오 프로그램들의 선택적 화질 제어)

  • 홍성훈;유상조
    • Journal of Broadcast Engineering
    • /
    • v.6 no.2
    • /
    • pp.148-159
    • /
    • 2001
  • This paper presents a selective duality control system to control relative picture quality among the video programs in terms of Peak Signal-to-Noise Ratio (PSNR) . The selective quality control system allows variable bit rate (VBR) for each video program to maintain the pre-determitted relative picture Quality among aggregated video programs while keeping a constant bit rate for alt programs to be transmitted over a single constant bit rate (CBR) channel. Thus is achieved by simultaneous controlling the video encoders to generate VBR video streams at the central controller. furthermore, we also suggest a buffer regulation method based on the analysis of the constraints Imposed by sender/receiver buffer sizes and the total transmission rate. Through various simulation results, it is found that the proposed quality control system guarantees that the video buffers neither overflow nor underflow and the quality control errors do not exceed 0.1 dB.

  • PDF

PC controlled Autonomous Navigation System for GPS Guided Field Robot (GPS를 이용한 필드로봇의 PC기반 자율항법 제어 시스템)

  • Han, Jae-Won;Park, Jae-Ho;Hong, Sung-Kyung;Ryuh, Young-Sun
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.278-285
    • /
    • 2009
  • Navigation system is applied in variety of fields including the simple location positioning, autopilot navigation of unmanned robot tractor, autonomous guidance systems for agricultural vehicles, construction of large field works that require high precision and map making process. Particularly utilization of GPS (Global Positioning System) is very common in the present navigation system. This study introduces a navigation system for autonomous field robot that travels to the pre-input path using GPS information. Performance of the GPS- based navigation is highly depended on its receiving rate because GPS receivers do not acquire any navigation information in the period between the refresh intervals. So this study presents an algorithm that improves an accuracy of the navigation by estimation the positional information during the blind period of a low rate GPS receiver. In fact the algorithm calculated the robot's heading in a 50 Hz rate, so the blind period of an 1 Hz GPS receiver is extensively covered. Consequently implementation of the algorithm to the GPS based navigation showed an improvement in guidance accuracy. The conventional field robot directly carried an expensive control computer and sensors onboard, therefore the miniaturization and weight reduction of the robot was limited. In this paper, the field robot carried only communication equipments such as GPS module, normal RC receiver, and bluetooth modem. This enabled the field robot to be built in an economic cost and miniature size.