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a b s t r a c t

Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive
equalization techniques do not utilize this feature to improve the performance. In this paper we consider
the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization
algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER
algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign inde-
pendent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On
this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and
equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER)
equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform
turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity.
Simulation and real-field experimental results show that the proposed algorithm has better performance
in convergence speed and Bit Error Rate (BER).
© 2021 Production and hosting by Elsevier B.V. on behalf of Society of Naval Architects of Korea. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Underwater environment is complicated and time-varying. The
underwater acoustic channels usually exhibit severe multipath ef-
fects and doppler shifts (Singer et al., 2009). The acoustic signals
propagate in water at a speed of about 1500 m per second. They
often suffer from multiple reflections and refractions which cause
sparse channel impulse responses (Stojanovic and Preisig, 2009).
Various channel equalization techniques were proposed to over-
come the Inter-Symbol Interference (ISI) caused by multipath ef-
fects. By embedding channel equalizer in the receiver, the effect of
ISI can be reduced. It is interesting that the sparsity of multipath
channels will lead to sparsity of the equalizer (Feng et al., 2012). By
taking advantage of this prior information of equalizer sparsity, we
will be able to improve the equalization performance.

The study of sparse equalizers has attracted intense research
interest (Kocic et al., 1995; Cotter and Rao, 2002; Pelekanakis and
formation Engineering, South Chin
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Chitre, 2012). Kocic et al. (1995) first proposed a sparse equaliza-
tion technique based on channel estimation. After the channel was
sparsely estimated, the corresponding coefficient vector of equal-
izer can be calculated. In Cotter and Rao (2002), Cotter et al. illus-
trated the Match Pursuit (MP) method, which used the residual
signal to maximize the correlation operation of the mixed matrix
column vector to obtain the estimated sparse channel, and then
used the estimated channel to calculate the Decision Feedback
Equalizer (DFE). In Pelekanakis and Chitre (2012), Pelekanakis et al.
applied the potential Riemannian structure of the channel and used
the norm of the channel impulse response value to obtain a
differentiable cost function. Then, the cost function was minimized
to obtain a sparse estimation of the channel, and the corresponding
equalizer was obtained according to the estimated channel.

In order to reduce the degradation of equalization performance
caused by inaccurate channel estimation, adaptive equalizers
without channel estimation were developed. The Improved
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Proportionate Normalized Least Mean Square (IPNLMS) (Benesty
and Gay, 2002) algorithm, which is developed based on the
PNLMS algorithm in Duttweiler (2000), provided an important
approach to design equalizers by exploiting the sparsity of the
impulse response in echo cancellation. Both PNLMS and IPNLMS
algorithms improve the convergence performance of the LMS al-
gorithm by assigning independent steps to the equalizer taps. In
Pelekanakis and Chitre (2010), several sparse adaptive filtering al-
gorithms were compared. The simulation results showed that the
sparse adaptive filtering algorithm could achieve lower bit error
rate and faster convergence speed when the channels are sparse. In
Tao et al. (2017), a sparse adaptive algorithm selective zero-
attracting normalized LMS (SZA-NLMS) was proposed, which
could improve the convergence speed of the equalizer by
combining data reuse and Multiple-Input Multiple-Output (MIMO)
technique. Liu et al. (2017) used a variety of norms as sparse con-
straints to derive a series of Least Absolute Shrinkage and Selection
Operator Recursive Least Squares (LASSO RLS).

The algorithms mentioned above are based on the Minimum
Mean Square Error (MMSE) criterion. However, experimental
analysis shows that the system does not necessarily achieve the
Minimum Symbol Error Rate (MSER) when minimum MSE is
reached (Chen et al., 2008). In communication systems, we con-
cerned about the symbol error rate more than the MSE. In recent
decades, MSER based equalization techniques have been investi-
gated (Chen et al., 2004, 2006; Gong et al., 2013; Zheng et al., 2013;
Xu et al., 2018). In (Gong et al., 2013) a simpler adaptive MSER
equalization algorithm was derived by minimizing the Euclidean
distance of the equalizers between two time-slots. Linear and de-
cision feedback equalizers based on adaptive MSER have been
proposed (Zheng et al., 2013). In Xu et al. (2018), the MSER equal-
ization technique was applied to the underwater acoustic receiver,
and showed satisfactory performance. However, the adaptive MSER
equalizer suffers from slow convergence. By using sparsity of
equalizer, in this paper we shall show that the equalizer perfor-
mance can be further improved.

It is worth noting that the turbo equalization technology has
been applied in underwater acoustic communication systems. In
order to utilize the equalizer sparsity, Qingwei et al. (2012) intro-
duced a technique that combines the IPNLMS algorithmwithmulti-
channel turbo equalization. The results of lake test show that the
proposed algorithm can reach 2kbps data rate transmission under
1.8 km range, 2 kHz bandwidth. Duan et al. (2017) applied the
IPNLMS algorithm to adaptive turbo equalization, and in combi-
nation with MIMO technology, faster convergence could be ach-
ieved with fewer training sequences. Wu et al. (2015) designed a
scheme that used multiple thresholds to determine the linear
equalizer tap position and reused the training sequence in the
turbo iteration. By adopting the sparse filtering algorithm in turbo
equalization, the performance of underwater acoustic communi-
cation system has been significantly improved.

This paper is inspired by Yukawa and Yamada (2009); Das and
Chakraborty, 2016), and is the first time to combine the sparse
precessing with theMSER equalization. Compared with the original
MSER equalizers, our proposed scheme adds sparse matrix to the
iterative formula which can assign independent steps to the
equalizer taps. We also propose a selection scheme for the sparse
matrix, so as to guarantee fast convergence of the proposed adap-
tive equalizer. Finally, we propose a receiver structure that com-
bines our proposed algorithm with turbo decoding, digital phase-
locked loop, time reversal and multi-reception diversity. The
effectiveness of the proposed algorithm is verified by simulated
618
channel and real-field experiment in the Thousand island Lake.
The rest of this paper is arranged as follows. Section 2 describes

the system model used in the derivation algorithm. Section 3 de-
duces the sparse MSER equalization algorithm under 4QAM sour-
ces. Section 4 expounds the determination of sparse matrix
elements and proposes a sparse matrix selection scheme. Section 5
introduces the proposed receiver structure. Section 6 verifies our
algorithm by simulation. Finally, Section 7 concludes this paper.

2. System model

We consider a time-invariant channel denoted as hk(k ¼ 0, …,
L � 1), where L is the length of channel responses. When the
transmitted symbols sk pass through the channel, we can get

rk ¼
XL�1

l¼0

hlsk�l þ nk; (1)

where nk is the channel noise, rk is the received signal. The received
signal can be presented in vector-matrix form as

rk ¼ Hsk þ nk; (2)

where rk ¼ ½rk; rk�1;…; rk�Nf�1
�T with Nf�1 being an integer indi-

cating the vector length, H is the Toeplitz matrix composed of the

channel impulse response and sk ¼ ½sk;…; sk�L�Nf�1�T is the trans-

mitted symbol vector, and nk ¼ ½nk;…;nk�L�Nf�1�T . The output of a

decision feedback equalizer is given by Zheng et al. (2013)

yk ¼ wT
krk þ bT

kbsk; (3)

where wk ¼ ½wk;0;wk;1;…;wk;Nf�1
�T , bk ¼ ½bk;0; bk;1;…; bk;Nb�1

�T de-

notes respectively the forward and backward filtering coefficients

at time slot k. bsk ¼ ½bsk�D�1;bsk�D�2;…;bsk�D�Nb
�T is the past esti-

mated symbols and D is the equalizer delay. Note that Nf andNb also
indicate the number of forward filter taps and feedback filter taps,
respectively.

In Yukawa and Yamada (2009), a variable-metric adaptive pro-
jected subgradient algorithm (V-APSM) was developed to take
advantage of the sparsity of equalizer. The original V-APSM algo-
rithm is based on the MMSE criterion. In this paper we extend the
V-APSM framework to DFE. Further, we design the DFE directly
based on the minimum-SER criterion. The optimization problem is
expressed as follows:

min
wk ;bk

�
kwk �wk�1k2G�1

f ;k
þ kbk � bk�1k2G�1

b;k

�
(4)

s:t: DetecðykÞ ¼ sk�D (5)

where kxk2A ¼ xTAx stands for the generalized inner product. Gf,k

and Gb,k are real diagonal matrices called sparse matrices. Detec(yk)
denotes the symbol detection operation on yk. We shall force the
equalizer to provide correct symbol detection, so as tominimize the
symbol error rate.

3. Algorithm derivation

In this section we shall derive the DFE and the sparse matrix
selection scheme. Without lost of generality, we consider 4-QAM
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sources, the real and imaginary parts of the transmitted signal are
drawn from { þ 1, �1}.

An adaptive equalizer updates the equalizer coefficients based
on each received snapshot and its corresponding equalizer output.
Note that the real and imaginary parts of the equalizer output are
independent. We first derive the iterative formula based on the real
part of the equalizer output. The real part of the equalizer output is
given by
tanh
�
bðUR þ1Þ�1

2
hb2½tanh0ðbðJR þ1ÞÞþ tanh0ðbðJR �1ÞÞ�rTkG

T
f ;krk

�
þ tanh

�
bðUR �1Þ�1

2
hb2½tanh0ðbðJR þ1ÞÞ

þ tanh0ðbðJR �1ÞÞ�rTkG
T
f ;krk

�
¼0; (11)
Rfykg ¼ R
n
wT

krk þ bT
kbsko ¼ wT

krk þ b
T
kbsk; (6)

where wk ¼ ½wT
R;�wT

I �
T
, rk ¼ ½rTR; rTI �

T
, bk ¼ ½bT

R;�bT
I �

T
and,

bsk ¼ ½bsTR;bsTI �T . Subscripts R and I denote the real and imaginary
parts of the vector elements, respectively.

If consider only the real part of the equalizer output, the
constraint of symbol detection can denote as sgnðRfykgÞ ¼
Rfsk�Dg. We can equivalently rewrite the constraint as follows:

8><>: sgnðwT
krk þ b

T
kbsk �Rfsk�Dg þ 1Þ ¼ 1

sgnðwT
krk þ b

T
kbsk �Rfsk�Dg � 1Þ ¼ �1:

(7)

By combining (5), (6) and (7), we can obtain the optimization
problem as follows:

min wk;bk

���wk �wk�1
��2
G

�1
f ;k
þ
���bk � bk�1

���2
G

�1
b;k

�
s:t: sgnðwT

krk þ b
T
kbsk �Rfsk�Dg þ 1Þþ

sgnðwT
krk þ b

T
kbsk �Rfsk�Dg � 1Þ ¼ 0; (8)

where Gf ;k and Gb;k are 2Nf � 2Nf and 2Nb � 2Nb diagonal matrices

constructed from Gf,k and Gb,k: Gf ;k ¼ diagfGf ;k; Gf ;kg, Gb;k ¼
diagfGb;k;Gb;kg. We use tanh(bx) to approximate sgn(x) and apply
the Lagrange multiplier method to solve the above optimization
problem, where b is a positive constant to scale the input (Gong
et al., 2013). Therefore, we can obtain the objective function as
follows:

Jðwk;bkÞ ¼
��wk �wk�1

��2
G
�1

f ;k
þ
���bk � bk�1

���2
G
�1

b;k

þþ

h

�
tanhðbðwT

krk þ b
T
kbsk �Rfsk�Dg þ 1ÞÞ þ þ

tanhðbðwT
krk þ b

T
kbsk �Rfsk�Dg � 1ÞÞ

�
; (9)

where h is the Lagrange multiplier. We set vJðwk;bkÞ=vwk ¼ 0, and
obtain
619
wk ¼ wk�1 �
1
2
hb½tanh0ðbðJR þ 1ÞÞþ

tanh0ðbðJR � 1ÞÞ�Gf ;krk;
(10)

where JR ¼ wT
krk þ b

T
k
bsk �Rfsk�Dg tanh'($) is the derivative of

tanh($). Substituting (10) into the constraint of (8) and using
tanh(bx) to approximate sgn(x) in (8), we get (11) as follows:
where UR ¼ wT
k�1rk þ b

T
kbsk � Rfsk�Dg.

If the equalizer can primely compensate the channel distortion,
the second item of tanh($) in (11) becomes a small value. Therefore,
we can calculate (11) by using the first order Taylor series, i.e.,
tanh(xþ D)z tanh(x)þ Dtanh'(x). Thenwe obtain the approximate
expression of (11), as follows:

1
2
hb½tanh0ðbðJR þ 1ÞÞ þ tanh0ðbðJR � 1ÞÞ� ¼

tanhðbðUR þ 1ÞÞ þ tanhðbðUR � 1ÞÞ
b½tanh0ðbðUR þ 1ÞÞ þ tanh0ðbðUR � 1ÞÞ�rTkG

T
f ;krk

:

(12)

If the channel has been well compensated, we will have

wT
k�1rk þ b

T
kbskzRfsk�Dg, that is UR z 0. So b

[tanh'(b(UR þ 1)) þ tanh'(b(UR � 1))]z 2btanh0(b) turns out to be a

constant. At time slot k, bk is unknown, and we can use bk�1
instead. Substituting (12) into (10) we obtain

wk ¼ wk�1 �
mfGf ;krk
rTkGf ;krk

FR; (13)

where FR ¼ ½tanhðbðUR þ1ÞÞþtanhðbðUR � 1ÞÞ�, UR ¼
wT

k�1rk þ b
T
k�1bsk � Rfsk�Dg, mf indicates the impact of all scalars.

Similarly, set vJðwk;bkÞ=vbk ¼ 0, and we can use similar method
to derive the iteration formula corresponding to the imaginary part
of the equalizer output.

bk ¼ bk�1 �
mbG

T
b;kbskbs

T

k
G
T
b;kbskFR: (14)

By combining Eqs. (13) and (14), we can get a complex form of
the Proportional Minimum Symbol Error Rate (PMSER) algorithm,
as follows:

wk ¼ wk�1 �
mf Ik

rHk G
T
f ;krk

Gf ;kr
*
k (15)

bk ¼ bk�1 �
mbIkbsHk GT

b;kbskGb;kbs*k; (16)
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where the iterative formulas in (15) and (16) have similar form to
the IPNLMS algorithm in Pelekanakis and Chitre (2010). Ik is a
complex error indicator of symbol detection defined as (Gong et al.,
2013; Chen et al., 2017)�

RfIkg ¼ ðtanhðbðUR þ 1ÞÞ þ tanhðbðUR � 1ÞÞÞ=2
IfIkg ¼ ðtanhðbðUI þ 1ÞÞ þ tanhðbðUI � 1ÞÞÞ=2: : (17)
4. Sparse matrix selection

To explore the sparsity of the equalizer, for the NLMS algorithm
Rupp et al. (Rupp and Cezanne, 2000) illustrated that the matrix
elements of Gf,k, Gb,k should be proportional to the absolute values
of the filter coefficients. Inspired by this work, next we discuss the
sparse matrix selection of the proposed PMSER algorithm.

First, we assume thatw* and b* correspond to the optimal filter

vector of wk and bk. Define ewk ¼ wk �w* and ebk ¼ bk� b* as the
error vectors at slot k, respectively. Further we define the forward

filter variance as Mk ¼ E
h ewk ewH

k

i
, where E[$] denotes the statistical

expectation and [$]H denotes the conjugate transpose. Based on
(13) we can present ewk as

ewk ¼ ewk�1 �
mfGf ;krkFR

rTkGf ;krk
: (18)

Next we will simplify FR. At slot k � 1, we have ewk�1 ¼ wk�1�
w* and ebk�1 ¼ bk�1 � b*, therefore we can obtain

rTk ewk�1 ¼ rTkwk�1 � rTkw
* (19)

bsTkebk�1 ¼ bsTkbk�1 � bsTkb*: (20)

We rewrite FR as FR ¼ f(r1) þ f(r2), where f ðxÞ ¼ tanhðbxÞ and

r1 ¼ rTkwk�1þbsTkbk�1�Rfsk�Dgþ1

¼ rTk ewk�1þbsTkebk�1�eþ1; (21)

where e ¼ Rfsk�Dg� ðrTkw* þbsTkb*Þ. Since rTk ewk�1 þ bsTkebk�1 � e is a
small value, by using the first-order Taylor series expansion we
have

f ðr1Þ¼ f
�
1þ rTk ewk�1 þ bsTkebk�1 � e

�
z1þ f 0ð1Þ

�
rTk ewk�1 þ bsTkebk�1 � e

�
(22)

Then we define r2 ¼ rTkwk�1 þ bsTkbk�1 � Rfsk�Dg� 1. By using
the same method we have

FR ¼ f ðr1Þ þ f ðr2Þ
z2f 0ð1Þ

�
rTk ewk�1 þ bsTkebk�1 � e

�
(23)

Substitute (18) and (23) into Mk and we have
620
Mk ¼ Mk�1 �
Mk�1Gf ;k þ Gf ;kMk�1

tr
�
Gf ;k

� þ G
2
f ;k

tr2
�
Gf ;k

�s2

þ Gf ;k

tr
�
Gf ;k

� ½trðMk�1ÞIþMk�1 � diagðMk�1Þ �

� Gf ;k

tr
�
Gf ;k

�;
(24)

The diagonal elements of matrix Mk can be presented as

mk ¼
0@I� 2

Gf ;k

tr
�
Gf ;k

�þ G
2
f ;k

tr2
�
Gf ;k

�11T
1Amk�1

þ G
2
f ;k

tr2
�
Gf ;k

�1s2:

(25)

where I is the 2Nf � 2Nf identity matrix and 1 is the 2Nf � 1 vector
with all entries equal 1. Now we investigate mk(i), which is the i-th
element in vectormk. Based on (25), it can be observed thatmk(i) is

proportional to
�
1� gf ;kðiÞ=tr

�
Gf ;k

��2
m2

k�1ðiÞ, where gf ;kðiÞ is the

i-th element on the diagonal of matrix Gf ;k. Since mk(i) represents
the deviation between the filter tap and the optimal filter tap ob-
tained at slot k, by choosing gf ;kðiÞ in proportion to jmk�1ðiÞ jwe can
makemk(i) converge to zero more quickly. Howevermk(i) is usually
unknown and larger tap values will result in larger errors. One
possible alternative is to set Gf ;k∝diag

	

wk


 �. That is, the diagonal

elements of the sparse matrix are proportional to the absolute
value of the estimated filter taps. In the same way, we can obtain

Gb;k∝diag
�


bk


 �. By deriving the imaginary part of the equalizer,

we can get similar conclusions. So in the iterative formula of the
complex structure, we have Gf,k and Gb,k proportional to the abso-
lute value of the filter tap. Next, wewill use the conclusions derived
above to guide the selection of sparse matrix elements.

Usually the selection of matrices Gf,k and Gb,k should take into
account the sparseness of the equalizer (Das and Chakraborty,
2016). Then, we use sparseness measure of impulse response in
(Hoyer, 2004):

SkðhkÞ ¼
L

L�
ffiffiffi
L

p
(
1�

��hkjj1ffiffiffi
L

p ���hkjj2

)
; (26)

where L is the length of hk. khkk1 and |hk| are the 1-norm of the
impulse response and the absolute value of the l-th impulse
response tap at slot k, respectively.

We can see that if hk is a delta function, that is,

hk ¼
�
±y; i ¼ i1
0; 0 � i � L� 1; isi1

(27)

then we have Sk ¼ 1. In addition, if hk has a constant magnitude for
each taps, we have Sk ¼ 0.
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We use formula (26) to calculate the sparseness measure of the
equalizer and its adaptive update during iteration can be expressed
as

xf ;k ¼ lf xf ;k�1 þ ð1� lf ÞSkðwk�1Þ; (28)

where lf is the forgetting factor. Finally, we adopt the Lagrangian
relaxation method to obtain gf,k(l):

gf ;kðlÞ ¼
ð1� af Þxf ;k

2Nf
þ ð1þ af Þjwk�1ðlÞj

2
��wk�1jj1

: (29)

where af is a scale indicating the weighting effect of the two
measures of equalizer sparsity. By adopting kwk�1k1 and |wk�1(l)|
in calculating the step size, a larger step size is assigned to the
forward filtering taps which have large absolute value, and vice-
versa. In addition we use the sparseness measure of equalizer to
avoid the step sizes become too large. This algorithm is named
sparse control PMSER (SC-PMSER). In this way, we can speed up the
convergence of the algorithm.

Using the same way, we can obtain the expression of gb,k(l):

gb;kðlÞ ¼
ð1� abÞxb;k

2Nb
þ ð1þ abÞjbk�1ðlÞj

2
��bk�1jj1

; (30)

where xb,k ¼ lbxb,k�1 þ (1� lb)Sk(bk�1). Similar to af, ab is applied to
combine the two measures of equalizer sparsity. Usually we set
af ¼ ab.
5. Receiver structure

In order to confront the complicated and time-varying real-
world underwater acoustic channel, we combine the proposed SC-
PMSER-DFE algorithm with turbo receiving structure, digital
phase-locked loopand time reversal technique (Xuet al., 2018). Fig.1
shows our proposed receiver structure, where

Q
and

Q�1 represent
the interleaver and uninterleaver, respectively. LE(bk|r) is the bit
priori information and LE(xk|r) is the external soft information.
Readers can refer to (Xu et al., 2018) for more detail of the turbo
receiver.

We use the decision feedback equalization technique combined
with the time reversal technique in Balakrishnan and Johnson
(2000), where the output of the normal equalizer, denoted as bs1;k,
and the output of the time reversal equalizer, denoted as bs2;k, are
combined as follows:

bsk ¼ tbs1;k þ ð1� tÞbs2;k; (31)

where we choose t ¼ 1/2.
In order to counter the Doppler effect of the underwater

acoustic channel, we apply the second-order digital phase-locked
loop in Stojanovic et al. (1994) (shown in Fig. 2), where the

output of the forward filter is pk ¼ ðwT
f ;krkÞe�jbq and the output of

the feedback filter is qk ¼ wT
b;k

edk, edk ¼
hedk�1;…; edk�Nb

iT
is the

previously detected symbol sequence. We can obtain the estimated
value of the current symbol and estimated error as follows:
621
bdk ¼ pk � qk (32)

ek ¼ dk � bdk (33)

By using theMMSE criterion tominimizes the objective function

E
h
jekj2

i
, we obtain the following second-order DPLL.

Fk ¼ Imfpkðdk þ qkÞ* g (34)

bqkþ1 ¼ bqk þ Kf1Fk þ Kf2

Xk
i¼0

Fi (35)

where Kf1 and Kf2 are tracking constants.
It is worth mentioning that we have adopted the reception di-

versity technique of equal-gain combination. Assume there are U
hydrophones to receive the arriving signal. Each individual received
signal is processed with the above mentioned turbo received and
then combined with equal gains. That is,

bsk ¼ 1
U

XU
u¼1

bsuk : (8)

where bsuk denotes the received signal at the uth hydrophone.

6. Evaluations

Information sources are transmitted through UACs, where both
simulated channel and real-world channels are applied. Further-
more, both training (TR) mode and Decision Direct (DD) mode are
considered. In the TRmode, training symbols known to the receiver
are first applied to update the DFE. Then, in the DD mode, the
outputs of equalizer are applied to replace the actual symbols. The
proposed algorithm is evaluated via a simulated acoustic channel
and real-world field experiments. In the simulated channel, we
evaluate the adaptive decision feedback equalizer (i.e. the turbo
structure is not applied). In the field experiments, the turbo
receiver is applied to tackle more complicated real-world channels.

For the proposed algorithm, we set b ¼ 1, lf ¼ lb ¼ 0.1 and
af ¼ ab ¼ �0.5. Note that the selection of these parameters are
based on the tradeoff between convergence speed and steady-state
performance. Herewe adopt some typical values applied in existing
work. More discussion of the proper selection of the parameter
were provided in the literature (Gong et al., 2013; Yukawa and
Yamada, 2009; Das and Chakraborty, 2016).

6.1. Simulated channel

In the simulation, information sources are modulated by 4QAM
modulation scheme. We apply the underwater channel model in
Song et al. (2011). The real and imaginary parts of the complex
underwater acoustic channel are plot in Fig. 3. The channel was
sampled with sampling rate of 2500/s. Here a relative low sampling
rate is applied such that the channel exhibits more obvious sparsity.
We perform computer simulations to evaluate the uncoded Symbol
Error Rate (SER) performance of the proposed SC-PMSER-DFE, and
compare it with the IPNLMS-DFE algorithm that is based on the



Fig. 2. DPLL combined with decision feedback equalizer.

Fig. 3. CHANNEL 1: The complex impulse response generated from the channel model
in Song et al. (2011).

Table 1
Parameters of equalizers.

IPNLMS-DFE MSER-DFE SC-PMSER-DFE

TR mode mf ¼ 0.15, mb ¼ 0.25
DD mode mf ¼ mb ¼ 0.03
Number of taps Nf ¼ Nb ¼ 120

Fig. 1. Receiver structure with SC-PMSER-DFE.
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MMSE criterion and the MSER-DFE algorithm that does not exploit
the sparsity of the equalizer.

In practical systems, the length of training sequence is usually
limited. So we set the training sequence length to 1000. Table 1
presents the parameters of all equalizers. Note that we adopt
smaller step sizes in the DD mode. This is because in DD mode the
detected symbols, which may contain erotic detections, are applied
as training symbols. A smaller step size can reduce the impact of
erotic detection. Usually the length of the equalizer should be larger
than that of the channel response. In this simulation we use large
equalizer lengths to guarantee that they are larger than the channel
responses.

Figs. 4 and 5 show the convergence curves of the three algo-
rithms when SNR ¼ 17 dB and SNR ¼ 22 dB, respectively. It can be
seen that SC-PMSER-DFE achieves better convergence performance
than MSER-DFE and IPNLMS-DFE. Because the MSER algorithm has
fewer errors at the beginning, our algorithm accumulates advan-
tages in the next equilibrium, and accelerates the equalization by
using sparsity. After the TR mode, due to the slow convergence of
MSER-DFE, it suffer from the problem of error propagation.

Fig. 6 shows the SER curve of three algorithms corresponding to
different SNRs. When the SNR is equal to 20 and 22 dB, in the
simulation the proposed SC-PMSER DF equalizer results in zero
Fig. 4. Convergence curve of the three algorithms in CHANNEL 1, where SNR is fixed to
17 dB.



Fig. 5. 1.00,0.00,0.00Convergence curve of the three algorithms in CHANNEL 1, where
SNR is fixed to 22 dB.

Fig. 6. SER performance of the three algorithms in CHANNEL 1.

Fig. 7. Illustration of the field test in the Tho
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erotic symbol detection. Hence no results were shown in Fig. 6. It
can be observed that the SC-PMSER-DFE algorithms outperform
MSER-DFE at all SNRs.

6.2. Real field experiment

We use our algorithm to decode the experimental data from a
real-field test in the Thousand-island lake (Xu et al., 2018). The
transmission data were modulated by 4-QAM modulation scheme
and we used a recursive convolution code with a code rate of 1/2
and a polynomial of [G1, G2]¼ (Cotter and Rao, 2002; Benesty and
Gay, 2002). The data rate is 6 Kbps. The center carrier frequency
is 12 kHz and the sampling frequency is 96 kHz. Total transmission
data were divided into 69 data frames. We added a falling Hyper-
bolic Frequency Modulation (HFM) signal in front of all the data
frames for data synchronization. The rising HFM signal is added in
each data frame for synchronization and doppler compensation.
Based on the HFM signal, conventional double correlators can be
applied to estimate the starting point and Doppler shift of each data
frame (Wang et al., 2015) (Readers can refer to (Wang et al., 2015)
for more detail of HFM signals).

The field experiments were carried out in the Thousand-island
lake in Zhejiang province, China. Dipping transformers were
placed 10 m under the water surface. The test scenario is shown in
Fig. 7. Both static and mobile communication tests were carried out
in the field experiment. The estimated channels based on known
source signals are shown in Figs. 7 and 9. Fig. 7 is the channel im-
pulse response obtained in an experiment conducted by a trans-
mitter with a speed of 7.4 knots approaching the receiver. Fig. 9
shows the channel impulse responses when the transmitter and
receiver are 700 m apart in winter. It can be seen that the channel
impulse responses are gradually becoming sparse. We also note
that Figs. 7 and 9 are not estimated by the proposed algorithm. They
are obtained with the conventional least square method, to
demonstrate the channel properties.

At the receiving end, we use the turbo equalization to process
the received data. In turbo equalization, we compare the perfor-
mance of IPNLMS DFE, MSER-DFE and SC-PMSER-DFE, Table 2
shows the parameters of the three equalizers.

Figs. 8 and 10 show the Bit Error Rate of all data frames which
were processed by multiple turbo receivers. In Figs. 8 and 10 we
compare the proposed SC-PMSER DFE turbo receiver with the
usand-island, Zhejiang province, China.



Fig. 9. Demodulation results of the algorithms under CHANNEL 2.

Fig. 8. CHANNEL 2: The transmitter approaches the receiver at 7.4 knots in the Thousand-island lake. (a) Time-domain channel response, (b) The Doppler spectrum.
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Fig. 10. CHANNEL 3: In the winter, the transceiver is 700 m apart in the Thousand-island lake. (a) Time-domain channel response, (b) The Doppler spectrum.

Table 2
Parameters of equalizers.

Algorithm SC-PMSER-DFE MSER-DFE IPNLMS-DFE

Filter type Forward Feedback Forward Feedback Forward Feedback

TR mode mf ¼ 0.6 mb ¼ 0.1 mf ¼ 0.6 mb ¼ 0.1 mf ¼ 0.6 mb ¼ 0.1
DD mode mf ¼ 0.6 mb ¼ 0.1 mf ¼ 0.6 mb ¼ 0.1 mf ¼ 0.6 mb ¼ 0.1
Number of taps Nf ¼ 120 Nb ¼ 51 Nf ¼ 120 Nb ¼ 51 Nf ¼ 120 Nb ¼ 51
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MSER DFE turbo receiver (Chen et al., 2017) that does not exploit
the equalizer sparsity and the IPNLMS DFE turbo receiver that is
based on the MMSE criterion. It can be observed that the proposed
receiver requires fewer turbo iterations to obtain a converged
result. For the 51st data frame, the BER quickly converges to zero
when the data are processed by the proposed SC-PMSER DFE turbo
receiver. While the results of the MSER DFE turbo receiver and the
625
IPNLMS DFE turbo receiver cannot converge. Compared with
CHANNEL 2, CHANNEL 3 exhibits much more obvious sparsity.
Hence the sparsity based schemes show superior performance.
Moreover, it can be observed that the proposed algorithm exhibits
faster convergence speed than theMSER DFE turbo receiver and the
IPNLMS DFE turbo receiver (see Fig. 11).



Fig. 11. Demodulation results of the algorithms under CHANNEL 3.
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7. Conclusion

Based on our previously proposed MSER-DFE scheme, we have
proposed an improved DFE which exploits the sparsity of the
equalizer. Compared to the original MSER-DFE, our new algorithm
assigns independent step sizes to the equalizer taps, thus achieves
faster convergence speed. The selection scheme of the time-varying
step size, i.e. the sparse matrices, is also provided. Furthermore, we
propose a receiver structure that combines SC-PMSER-DFE with
turbo decoding, DPLL, time reversal diversity and multi-reception
diversity. We use this receiver to demodulate signals received un-
der different sparse channels. The demodulation results show that
our new algorithm can effectively reduce the number of turbo it-
erations and accelerate the convergence of the receiver.
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