Transmission Rate-Based Overhead Monitoring for Multimedia Streaming Optimization in Wireless Networks

무선 네트워크상에서 멀티미디어 스트리밍 최적화를 위한 전송율 기반의 오버헤드 모니터링

  • Lee, Chong-Deuk (Div. of Electronic Engineering, Chonbuk National University)
  • 이종득 (전북대학교 공과대학 전자공학부)
  • Received : 2010.05.04
  • Accepted : 2010.06.30
  • Published : 2010.06.30

Abstract

In the wireless network the congestion and delay occurs mainly when there are too many packets for the network to process or the sender transmits more packets than the receiver can accept. The congestion and delay is the reason of packet loss which degrades the performance of multimedia streaming. This paper proposes a novel transmission rate monitoring-based optimization mechanism to optimize packet loss and to improve QoS. The proposed scheme is based on the trade-off relationship between transmission rate monitoring and overhead monitoring. For this purpose this paper processes a source rate control-based optimization which optimizes congestion and delay. Performance evaluated RED, TFRC, and the proposed mechanism. The simulation results show that the proposed mechanism is more efficient than REC(Random Early Detection) mechanism and TFRC(TCP-friendly Rate Control) mechanism in packet loss rate, throughput rate, and average response rate.

무선 네트워크상에서 혼잡과 지연은 네트워크 내에 존재하는 패킷의 수가 과도하게 증가하거나 송신측과 수신측의 전송 균형이 일치되지 않을 때 주로 발생한다. 이러한 혼잡과 지연은 패킷 손실 (pack loss)의 원인이 되며, 패킷손실은 멀티미디어 스트리밍의 성능을 떨어뜨릴 뿐만 아니라 오버헤드를 증가시킨다. 본 논문에서는 무선네트워크의 패킷 손실을 최적화하고 멀티미디어 스트리밍의 QoS 향상을 위한 전송율 기반의 멀티미디어 스트리밍의 최적화 메카니즘을 제안한다. 제안된 기법은 전송율 모니터링과 오버헤드 모니터링에 기반하여 최적화를 수행한다. 이러한 목적을 위하여 본 논문에서는 소스율 제어에 의한 최적화를 수행하도록 하며, 이것은 혼잡, 지연 등의 이슈들을 최적화하기 위한 것이다. 성능 평가는 RED (Random Early Detection), TFRC (TCP-friendly Rate Control) 그리고 제안된 기법으로 수행하였으며, 시뮬레이션 결과 제안된 기법이 RED, TFRC기법에 비해서 패킷손실율, 처리율, 평균 응답율이 보다 효율적임을 알게 되었다.

Keywords

References

  1. A. Shegal, O. Verscheure, and P. Frossard, "Distortion-buffer optimized TCP video streaming", in Proc. IEEE Int. Conf. Image Proccsing(ICIP), pp.2083-2086, 2004.
  2. Peng Zhu, Wenjun zeng, and Chunwen Li, "Joint Design of Source Rate Control and QoS-Aware Congestion Control for Video Streaming Over the Internet", IEEE Trans. on Multimedia, vol. 9, no. 2, pp.365-376, 2007.
  3. Peng Zhu, Wenjun zeng, and Chunwen Li, "Cross-Layer Design of Source Rate Control and Congestion Control for Wireless Video Streaming", Hindawi Publishing Corporation Advances in Multimedia, pp1-13, 2007.
  4. N.R. Sastry and S.S. Lam, "CYRF: A Theory of Window-based Unicast Congestion Control", IEEH/ACM Trans. on Networking, vol. 13, no. 2, pp.330-342, 2005. https://doi.org/10.1109/TNET.2005.845545
  5. R. Rejaie, M. Handley, and D. Estrin, "RAP an end-to-based congestion control mechanism for realtime streams in the internet", in Proceedings of the 18th Annual Joint Conf. of the IEEE Computer and Communications Societies(INFOCOM'99), vol. 33, pp.1337-1345.
  6. M. Handley, S. Floyd, J. Padhye, and J. Widmer, "TCP-Friendly rate control(TFRC): protocol specification", IETF RFC 3448, 2003.
  7. Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Geda, "The Impact of Multihop Wireless Channel on TCP Throughput and Loss", in IEEE Infocom 2003, SanFrancisco, California, USA, Apr. 2003.
  8. B. Wang, J. F. Kurose, P. J. Shenoy, and D. F. Towsley, "Multimedia Streaming via TCP : an analytic performance study", Proc. ACM Multimedia '04, pp.908-915, 2004.
  9. Kai-Ting Yang, Wei Kuang Lai and Chin-Shiuh Shieh, "A Cross-layer Approach to Packet Size Adaptation for Improved Utilization in Mobile Wireless Networks", International Journal of Innovative Computing, Information and Control, vol. 5, no. 11(B), pp.4335-4346, 2009.
  10. Takuo Nakashima, "Properties of the Correlation between Queue Length and Congestion Window Size under Self-similar Traffics", International Journal of Innovative Computing, Information and Control, vol. 5, no. 11(B), pp.4373-4382, 2009.
  11. Ali Moarefianpour and Vahid Majd, "Input-to-state Stability in Congestion Control Problem of Computer Networks with Nonline Links", International Journal of Innovative Computing, Information and Control, vol. 5, no.8, pp.2091-2106, 2009.
  12. S. Cen, P. C. Cosman, and G. M. Voelker, "End-to-End differentiation of congestion wireless losses", IEEE/ACM Transactions on Networking, vol. 11, pp. 703-717, 2003. https://doi.org/10.1109/TNET.2003.818187
  13. H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, "A comparison of mechanisms for improving TCP performance over wireless links", IEEE/ACM Transaction on Networking, vol. 5, no. 6, pp756-769, 1997. https://doi.org/10.1109/90.650137
  14. D.Barman and Matta, "Effectiveness of loss labeling in improving TCP performance in wired/wireless network", in proceeding of the 10th IEEE International conference Network Protocols(ICNP'02), pp.2-11, 2002.
  15. M. Chen and A. Zakhor, "Multiple TFRC connections based rate control for wireless networks", IEEE Transactions on Multimedia, vol. 8, no. 5, pp.1045-1062, 2006. https://doi.org/10.1109/TMM.2006.879837
  16. B. Xie and W. Zeng, "Rate-distortion optimized dynamic bit-stream switching for scalable video streaming", in IEEE international Conference On Multimedia and Expo(ICME'04), vol. 2, pp.1327-1330, 2004
  17. J. Yan, K. Katrinis, M. may, and B. Platter, "Media-and TCP-friendly congestion control for scalable video streams", IEEE Transactions on Multimedia, vol.8, no.2, pp.196-206, 2006. https://doi.org/10.1109/TMM.2005.864265
  18. NS-2 simulator, http://www.isi.edu/nanam/ns