• Title/Summary/Keyword: real uniformly convex Banach space

Search Result 11, Processing Time 0.016 seconds

CONVERGENCE THEOREMS OF MULTI-STEP ITERATIVE SCHEMES WITH ERRORS FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE NONSELF MAPPINGS

  • Kim, Jong-Kyu;Saluja, G.S.;Nashine, H.K.
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.81-93
    • /
    • 2010
  • In this paper, a strong convergence theorem of multi-step iterative schemes with errors for asymptotically quasi-nonexpansive type nonself mappings is established in a real uniformly convex Banach space. Our results extend the corresponding results of Wangkeeree [12], Xu and Noor [13], Kim et al.[1,6,7] and many others.

WEAK AND STRONG CONVERGENCE FOR QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Kim, Gang-Eun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.799-813
    • /
    • 2012
  • In this paper, we first show that the iteration {$x_n$} defined by $x_{n+1}=P((1-{\alpha}_n)x_n +{\alpha}_nTP[{\beta}_nTx_n+(1-{\beta}_n)x_n])$ converges strongly to some fixed point of T when E is a real uniformly convex Banach space and T is a quasi-nonexpansive non-self mapping satisfying Condition A, which generalizes the result due to Shahzad [11]. Next, we show the strong convergence of the Mann iteration process with errors when E is a real uniformly convex Banach space and T is a quasi-nonexpansive self-mapping satisfying Condition A, which generalizes the result due to Senter-Dotson [10]. Finally, we show that the iteration {$x_n$} defined by $x_{n+1}={\alpha}_nSx_n+{\beta}_nT[{\alpha}^{\prime}_nSx_n+{\beta}^{\prime}_nTx_n+{\gamma}^{\prime}_n{\upsilon}_n]+{\gamma}_nu_n$ converges strongly to a common fixed point of T and S when E is a real uniformly convex Banach space and T, S are two quasi-nonexpansive self-mappings satisfying Condition D, which generalizes the result due to Ghosh-Debnath [3].

Noor Iterations with Error for Non-Lipschitzian Mappings in Banach Spaces

  • Plubtieng, Somyot;Wangkeeree, Rabian
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.201-209
    • /
    • 2006
  • Suppose C is a nonempty closed convex subset of a real uniformly convex Banach space X. Let T : $C{\rightarrow}C$ be an asymptotically nonexpansive in the intermediate sense mapping. In this paper we introduced the three-step iterative sequence for such map with error members. Moreover, we prove that, if T is completely continuous then the our iterative sequence converges strongly to a fixed point of T.

  • PDF

ON FIXED POINT OF UNIFORMLY PSEUDO-CONTRACTIVE OPERATOR AND SOLUTION OF EQUATION WITH UNIFORMLY ACCRETIVE OPERATOR

  • Xu, Yuguang;Liu, Zeqing;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.24 no.3
    • /
    • pp.305-315
    • /
    • 2008
  • The purpose of this paper is to study the existence and uniqueness of the fixed point of uniformly pseudo-contractive operator and the solution of equation with uniformly accretive operator, and to approximate the fixed point and the solution by the Mann iterative sequence in an arbitrary Banach space or an uniformly smooth Banach space respectively. The results presented in this paper show that if X is a real Banach space and A : X $\rightarrow$ X is an uniformly accretive operator and (I-A)X is bounded then A is a mapping onto X when A is continuous or $X^*$ is uniformly convex and A is demicontinuous. Consequently, the corresponding results which depend on the assumptions that the fixed point of operator and solution of the equation are in existence are improved.

  • PDF

COMPOSITE IMPLICIT RANDOM ITERATIONS FOR APPROXIMATING COMMON RANDOM FIXED POINT FOR A FINITE FAMILY OF ASYMPTOTICALLY NONEXPANSIVE RANDOM OPERATORS

  • Banerjee, Shrabani;Choudhury, Binayak S.
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.23-35
    • /
    • 2011
  • In the present work we construct a composite implicit random iterative process with errors for a finite family of asymptotically nonexpansive random operators and discuss a necessary and sufficient condition for the convergence of this process in an arbitrary real Banach space. It is also proved that this process converges to the common random fixed point of the finite family of asymptotically nonexpansive random operators in the setting of uniformly convex Banach spaces. The present work also generalizes a recently established result in Banach spaces.

STRONG CONVERGENCE OF PATHS FOR NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

  • Kang, Shin Min;Cho, Sun Young;Kwun, Young Chel
    • Korean Journal of Mathematics
    • /
    • v.19 no.3
    • /
    • pp.279-289
    • /
    • 2011
  • Let E be a uniformly convex Banach space with a uniformly Gateaux differentiable norm, C be a nonempty closed convex subset of E and f : $C{\rightarrow}C$ be a fixed bounded continuous strong pseudocontraction with the coefficient ${\alpha}{\in}(0,1)$. Let $\{{\lambda}_t\}_{0<t<1}$ be a net of positive real numbers such that ${\lim}_{t{\rightarrow}0}{\lambda}_t={\infty}$ and S = {$T(s)$ : $0{\leq}s$ < ${\infty}$} be a nonexpansive semigroup on C such that $F(S){\neq}{\emptyset}$, where F(S) denotes the set of fixed points of the semigroup. Then sequence {$x_t$} defined by $x_t=tf(x_t)+(1-t)\frac{1}{{\lambda}_t}{\int_{0}}^{{\lambda}_t}T(s)x{_t}ds$ converges strongly as $t{\rightarrow}0$ to $\bar{x}{\in}F(S)$, which solves the following variational inequality ${\langle}(f-I)\bar{x},\;p-\bar{x}{\rangle}{\leq}0$ for all $p{\in}F(S)$.

WEAK AND STRONG CONVERGENCE TO COMMON FIXED POINTS OF NON-SELF NONEXPANSIVE MAPPINGS

  • Su, Yongfu;Qin, Xiaolong
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.437-448
    • /
    • 2007
  • Suppose K is a nonempty closed convex nonexpansive retract of a real uniformly convex Banach space E with P as a nonexpansive retraction. Let $T_1,\;T_2\;and\;T_3\;:\;K{\rightarrow}E$ be nonexpansive mappings with nonempty common fixed points set. Let $\{\alpha_n\},\;\{\beta_n\},\;\{\gamma_n\},\;\{\alpha'_n\},\;\{\beta'_n\},\;\{\gamma'_n\},\;\{\alpha'_n\},\;\{\beta'_n\}\;and\;\{\gamma'_n\}$ be real sequences in [0, 1] such that ${\alpha}_n+{\beta}_n+{\gamma}_n={\alpha}'_n+{\beta'_n+\gamma}'_n={\alpha}'_n+{\beta}'_n+{\gamma}'_n=1$, starting from arbitrary $x_1{\in}K$, define the sequence $\{x_n\}$ by $$\{zn=P({\alpha}'_nT_1x_n+{\beta}'_nx_n+{\gamma}'_nw_n)\;yn=P({\alpha}'_nT_2z_n+{\beta}'_nx_n+{\gamma}'_nv_n)\;x_{n+1}=P({\alpha}_nT_3y_n+{\beta}_nx_n+{\gamma}_nu_n)$$ with the restrictions $\sum^\infty_{n=1}{\gamma}_n<\infty,\;\sum^\infty_{n=1}{\gamma}'_n<\infty,\; \sum^\infty_{n=1}{\gamma}'_n<\infty$. (i) If the dual $E^*$ of E has the Kadec-Klee property, then weak convergence of a $\{x_n\}$ to some $x^*{\in}F(T_1){\cap}{F}(T_2){\cap}(T_3)$ is proved; (ii) If $T_1,\;T_2\;and\;T_3$ satisfy condition(A'), then strong convergence of $\{x_n\}$ to some $x^*{\in}F(T_1){\cap}{F}(T_2){\cap}(T_3)$ is obtained.

ITERATIVE APPROXIMATION OF FIXED POINTS FOR φ-HEMICONTRACTIVE OPERATORS IN BANACH SPACES

  • Liu, Zeqing;An, Zhefu;Li, Yanjuan;Kang, Shin-Min
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.63-74
    • /
    • 2004
  • Suppose that X is a real Banach space, K is a nonempty closed convex subset of X and T : $K\;\rightarrow\;K$ is a uniformly continuous ${\phi}$-hemicontractive operator or a Lipschitz ${\phi}-hemicontractive$ operator. In this paper we prove that under certain conditions the three-step iteration methods with errors converge strongly to the unique fixed point of T. Our results extend the corresponding results of Chang [1], Chang et a1. [2], Chidume [3]-[7], Chidume and Osilike [9], Deng [10], Liu and Kang [13], [14], Osilike [15], [16] and Tan and Xu [17].

APPROXIMATION OF COMMON FIXED POINTS OF NON-SELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Kim, Jong-Kyu;Dashputre, Samir;Diwan, S.D.
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.179-196
    • /
    • 2009
  • Let E be a uniformly convex Banach space and K a nonempty closed convex subset which is also a nonexpansive retract of E. For i = 1, 2, 3, let $T_i:K{\rightarrow}E$ be an asymptotically nonexpansive mappings with sequence ${\{k_n^{(i)}\}\subset[1,{\infty})$ such that $\sum_{n-1}^{\infty}(k_n^{(i)}-1)$ < ${\infty},\;k_{n}^{(i)}{\rightarrow}1$, as $n{\rightarrow}\infty$ and F(T)=$\bigcap_{i=3}^3F(T_i){\neq}{\phi}$ (the set of all common xed points of $T_i$, i = 1, 2, 3). Let {$a_n$},{$b_n$} and {$c_n$} are three real sequences in [0, 1] such that $\in{\leq}\;a_n,\;b_n,\;c_n\;{\leq}\;1-\in$ for $n{\in}N$ and some ${\in}{\geq}0$. Starting with arbitrary $x_1{\in}K$, define sequence {$x_n$} by setting {$$x_{n+1}=P((1-a_n)x_n+a_nT_1(PT_1)^{n-1}y_n)$$ $$y_n=P((1-b_n)x_n+a_nT_2(PT_2)^{n-1}z_n)$$ $$z_n=P((1-c_n)x_n+c_nT_3(PT_3)^{n-1}x_n)$$. Assume that one of the following conditions holds: (1) E satises the Opial property, (2) E has Frechet dierentiable norm, (3) $E^*$ has Kedec -Klee property, where $E^*$ is dual of E. Then sequence {$x_n$} converges weakly to some p${\in}$F(T).

CONVERGENCE OF APPROXIMATING PATHS TO SOLUTIONS OF VARIATIONAL INEQUALITIES INVOLVING NON-LIPSCHITZIAN MAPPINGS

  • Jung, Jong-Soo;Sahu, Daya Ram
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.377-392
    • /
    • 2008
  • Let X be a real reflexive Banach space with a uniformly $G\hat{a}teaux$ differentiable norm, C a nonempty closed convex subset of X, T : C $\rightarrow$ X a continuous pseudocontractive mapping, and A : C $\rightarrow$ C a continuous strongly pseudocontractive mapping. We show the existence of a path ${x_t}$ satisfying $x_t=tAx_t+(1- t)Tx_t$, t $\in$ (0,1) and prove that ${x_t}$ converges strongly to a fixed point of T, which solves the variational inequality involving the mapping A. As an application, we give strong convergence of the path ${x_t}$ defined by $x_t=tAx_t+(1-t)(2I-T)x_t$ to a fixed point of firmly pseudocontractive mapping T.