Acknowledgement
Supported by : Council of Scientific and Industrial Research(CSIR)
References
- I. Beg and M. Abbas, Iterative procedures for solutions of random operator equationsin Banach spaces, J. Math. Anal. Appl. 315 (2006), 181-201. https://doi.org/10.1016/j.jmaa.2005.05.073
- I. Beg and N. Shahzad, Random fixed point theorems for nonexpansive and contractive-type random operators on Banach spaces, J. Appl. Math. Stochastic Anal. 7 (1994),no.4, 569-580. https://doi.org/10.1155/S1048953394000444
- V. Berinde, Iterative Approximation of Fixed Points, Springer Verlag, Berlin, Heidelberg, Newyork, 2007.
- B. S. Choudhury, Random Mann iteration scheme, Appl. Math. Lett. 16 (2003), 93-96. https://doi.org/10.1016/S0893-9659(02)00149-0
- B. S. Choudhury, Convergence of a random iteration scheme to a random fixed point, J. Appl.Math. Stochastic Anal. 8 (1995), no. 2, 139-142. https://doi.org/10.1155/S104895339500013X
- B. S. Choudhury, A common unique fixed point theorem for two random operators in Hilbertspaces, Int. J. Math. Math. Sci. 32 (2002), no. 3, 177-182. https://doi.org/10.1155/S0161171202005616
- B. S. Choudhury, A Random Fixed Point Iteration For Three Random Operators On UniformlyConvex Banach Spaces, Analysis in Theory and Application 19 (2003), no. 2, 99-107. https://doi.org/10.1007/BF02835233
- B. S. Choudhury, An Iteration For Finding A Common Random Fixed Point, J. Appl. Math.Stochastic Anal. 4 (2004), 385-394.
- B. S. Choudhury and A. Upadhyay, An iteration leading to random solutions and fixedpoints of operators, Soochow J. Math. 25 (1999), no. 4, 395-400.
- O. Hans, Random fixed point theorems, Transactions of the 1st Prague Conf. on Information Theory, Statistics, Decision Eunctions and Random Procesess, Czeschosl. Acad. Sci., Prague (1957), pp. 105-125.
- C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. https://doi.org/10.4064/fm-87-1-53-72
- S. Itoh, Random Fixed Point Theorems with an Application to Random DifferentialEquations in Banach Spaces, J. Math. Anal. Appl. 67 (1979), 261-273. https://doi.org/10.1016/0022-247X(79)90023-4
- A. R. Khan, A. B. Thaheem, and N. Hussain, Random Fixed Points and RandomApproximations in Nonconvex Domains, J. Appl. Math. Stochastic Anal. 15 (2002), no.3, 263-270.
- T. C. Lin, Random Approximations and Random Fixed Point Theorems For Continuous1-Set-Contractive Random Maps, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1167-1176.
- L. S. Liu, Ishikawa and Mann Iterative process with errors for nonlinear atrongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114-125. https://doi.org/10.1006/jmaa.1995.1289
- D. O'Regan, Random Fixed Point Theory for Multivalued Maps, Stochastic Analysisand Applications 17 (1999), no. 4, 597-607. https://doi.org/10.1080/07362999908809623
- S. Plubtieng, P. Kumam, and R.Wangkeeree, Approximation of a common random fixedpoint for a finite family of random operators, Int. J. Math. Math. Sci. 2007 (2007),Article ID 69626, 12pages, doi:10.1155/2007/69626.
- B. E. Rhoades, Iteration to obtain random solutions and fixed points of operators inuniformly convex Banach spaces, Soochow J. Math. 27 (2001), no. 4, 401-404.
- K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mapping by theIshikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308. https://doi.org/10.1006/jmaa.1993.1309
- J. Schu, Weak and strong convergence of fixed points of asymptotically nonexpansivemappings, Bull. Austral. Math. Soc. 43 (1991), 153-159. https://doi.org/10.1017/S0004972700028884
- A. Spacek, Zuffalige gleichungen, Czech. Math. Jour. (80) (1955), no. 5, 462-466.
Cited by
- Approximating common random fixed point for two finite families of asymptotically nonexpansive random mappings vol.22, pp.2, 2014, https://doi.org/10.1016/j.joems.2013.07.010