• Title/Summary/Keyword: real power application

Search Result 615, Processing Time 0.039 seconds

Dynamic Model of PEM Fuel Cell Using Real-time Simulation Techniques

  • Jung, Jee-Hoon;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.739-748
    • /
    • 2010
  • The increased integration of fuel cells with power electronics, critical loads, and control systems has prompted recent interest in accurate electrical terminal models of the polymer electrolyte membrane (PEM) fuel cell. Advancement in computing technologies, particularly parallel computation techniques and various real-time simulation tools have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds upon both advancements and provides a means of optimized model construction boosting computation speeds for a fuel cell model on a real-time simulator which can be used in a power hardware-in-the-loop (PHIL) application. Significant improvement in computation time has been achieved. The effectiveness of the proposed model developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator is verified using experimental results from a Ballard Nexa fuel cell system.

Development of Real-Time Load Flow Program for Korean Energy Management System (한국형 EMS 시스템용 실시간 조류계산 프로그램 개발)

  • Yun, Sang-Yun;Cho, Yoon-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.242-247
    • /
    • 2010
  • This paper introduces a real-time load flow program for Korean energy management system(EMS). This study is concentrated on the following aspects. First, we propose the model of the real-time database and power system equipment for the real-time load flow. These models are extracted from the needs of load flow functions and are designed to the application common information. Second, several techniques are applied for the efficient convergence and computational speed. The generation/load mismatch is redistributed using generator participation factors which are separated to the reference bus. For the voltage control, the jacobian matrix is composed with the basic Y matrix elements and the voltage control elements. Through the optimally ordering, jacobian row and column for a column is changed. However all jacobian matrix entries have same order with the Y matrix. The proposed program is tested using the Korea Electric Power Corporation(KEPCO) system. Through the test, we verified that the proposed program can be effectively used to accomplish the Korean EMS system.

Study on the Calculation of the Optimal Power System Operation Considering Line Contingencies and Line Capacities (선로사고 및 선로용량을 고려한 전력계통 최적운영에 관한 연구)

  • 박영문;백영식;서보혁;신중린
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.9
    • /
    • pp.609-615
    • /
    • 1987
  • The optimal operation of power system is developed by alternately using real power dispatch and reactive power dispatch problem. The real power system scheduling process is formulated as an optimization problem with linear inequality constraints. A.C. loadflow method is used for the problem solution and line losses are considered. The constraints under consideration are generator power limits, load scehdling limits and line capacity limits. In solving the objective function the Dual Relaxation method is adopted. Tests indicate that the method is practical for real time application. The reactive power control problem uses the Dual Simplex Relaxation method as in the real scheduling case. Insted of minimizing the cost of power system, the objective is selected as to determine the highest possible voltage schedule. The constraints under consideration are the voltage limits at each node and the possibilities of supply or absobtion of reactive energy by generator units and the compensation facilities. Tests indicate that the method is practical for real time applications. The overall optimization methods developed in this paper proved to obtained fine results in minimizing object function compared with the method without using voltage control. And the overall voltage profiles were also improved.

  • PDF

A Study on the Fault Current Characteristics for the Utility Application of HTS Power cable (초전도 전력케이블의 전력계통 적용을 위한 고장전류 특성에 관한 연구)

  • Kim, Jae-Ho;Park, Min-Won;Sim, Ki-Deok;Cho, Jeon-Wook;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.75-76
    • /
    • 2007
  • Several kinds of High Temperature Superconducting(HTS) power cables have already been developed and evaluated for use in the utility power network. HTS power cable is expected to be used as a very powerful energy delivery system supplying electric power for densely populated cities in the near future, because HTS power cable is capable of the high current density delivery with low AC loss and the size effect comparing with the conventional cable whose capacity is same. Before applying the HTS power cable to real utility network system analysis should be carried out by some simulation tools. Hereby the electrical power system analysis is very important for the practical use of HTS power devices. In this paper, authors propose a real-time simulation method which incorporates a real HTS tapes into the simulated 22.9kV utility power network system using Real Time Digital Simulator(RTDS). For the simulation analysis, a test sample of HTS tapes was actually manufactured, and the transient phenomenon of HTS power cable system was analyzed in the simulated utility power network.

  • PDF

A Study on the Digital Relaying Techniques by Real-Time Symmetrical Components of Power System (전력계통의 실시간 대칭성분을 이용한 거리계전 기법에 관한 연구)

  • 신명철;김철환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.10
    • /
    • pp.695-702
    • /
    • 1987
  • Nowadays as the power systems have been more complicated and have grown to ultra high voltage, it requires a accurate and high speed relaying scheme to improve the reliability and stability of power systems for a harmonious power supplying. For this purpose voltage and current have to be measured at the location of the protective device and the short circuit impedance must be determined. This paper presents the application methods and some results of digital distance relaying scheme which is based upon the theouy of real-time symmetrical components. Usually the symmetrical component have been used to solve the transient systems as well as the steady state systems under unbalanced systems. But, real-time symmetrical component frequently have not been applied to on-line control region of the large power system. We have tried to apply this method to deal with the various type of faults on artificial transmission line. And experimental results demonstrate the validity of the proposed techniques. Therefore, this study is expected that it is contributed to improve the reliability of power supplying, searching for the fault location rapidly and exactly in power system.

  • PDF

Laser Welding Application in Car Body Manufacturing

  • Shin, H.O.;Chang, I.S.;Jung, C.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.2-7
    • /
    • 2003
  • Laser welding application for car body manufacturing has many advantages in the stiffness and the lightness of vehicle, the productivity of assembly line, and the degree of freedom in design. This presentation will express the innovation of car body manufacturing including parameter optimization, process modeling, and system integration. In this application the investment for systems was cut down dramatically by real time switching over the laser path between two welding stations. Points of technical discussion are as follows; optimization of parameters such as laser power, robot speed and trajectory, compact and useful design of jig & fixture to assure welding quality for 3 sheet-layer zinc-coated steel, system integration between 4㎾ Nd:YAG laser device and the other systems, on-line real time welding quality monitoring system, perfect safety standards for high power laser, minimization of consumption costs such as arc lamp, protective glass for optic, etc. This application was successfully launched mass production line in 2001. The laser-welded line of side panel consists of 122 stitches totally. And the length is about 2.4m.

  • PDF

Operating Current for the application of 22.9kV hybrid SFCL to real power grid in Korea (국내 실계통 적용을 위한 22.9kV 복합형 초전도한류기 동작전류 검토)

  • Lee, Seung-Ryul;Yoon, Jae-Young;Yang, Byong-Mo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.39-43
    • /
    • 2010
  • In Korea, 22.9kV hybrid SFCL (Superconducting Fault Current Limiter) has been developed and carried out long-term field tests in Gochagn power test center of KEPCO through DAPAS program. The SFCL will be installed at a distribution line of Icheon substation in Korea. For the successful application, we have to design the specifications considering real power system operation. This paper proposes a concept of the operating current based rms value for the protection coordination with protective delays and studies a proper range of the current in Korean distribution power system.

Development of a Real-time Simulation Method for the Utility Application of Superconducting power Devices (PART 1 : HIS Power Cable) (초전도 전력기기의 계통적용을 위한 실시간 시뮬레이션 기법 개발 (PART 1 : 고온초전도 전력 케이블))

  • Kim, Jae-Ho;Park, Min-Won;Park, Dae-Jin;Kang, Jin-Ju;Cho, Jeon-Wook;Sim, Ki-Deok;Yu, In-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1055-1060
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Since HTS power cable is capable of the high current density delivery with low power loss, the cable size can be compact comparing with the conventional cable whose capacity is same. In this paper, the authors propose the real time simulation method which puts a teal HTS wire into the simulated 22.9 kV utility grid system using Real Time Digital Simulator (RTDS). For the simulation analysis, test sample of HTS wire was actually manufactured. And the transient phenomenon of the HTS wire was analyzed in the simulated utility power grid. This simulation method is the world first trial in order to obtain much better data for installation of HTS power device into utility network.

Real-Time Power Electronics Remote Wiring and Measurement Laboratory (PermLAB) Using 3-D Matrix Switching Algorithms

  • Asumadu, Johnson A.;Tanner, Ralph;Ogunley, Hakeem
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.611-620
    • /
    • 2010
  • This paper presents a new architecture, called "Power Electronics Remote Wiring and Measurement Laboratory (PermLAB)", that translates a common gateway interface (CGI) string from a remote web user to a web server connected to a 3-dimension switching matrix board, can be used to switch on and off, and to control a cluster of instruments and components. PermLAB addresses real-time connection, switching, and data acquisition over the Internet instead of using simulated data. A software procedure uses a signature system to identify each instrument and component in a complex system. The Web-server application is developed in HTML, JavaScript and Java, and in C language for the CGI interface, which resides in a controller portion of LabVIEW. The LabVIEW software fully integrates the Web sever, LabVIEW data acquisition boards and controllers, and the 3-dimensional switching matrix board. The paper will analyze a half-wave rectifier (AC - DC converter) circuit connected over the Internet using the PermLAB. PermLAB allows students to obtain real data by real-time wiring of real circuits in the laboratory using a "virtual breadboard" on the Web. The software for the Web-based 3-dimensional system is flexible, portable, can be integrated into many laboratory applications or expanded, and easily accessible worldwide.

A basic study on protective relay testing using RTDS in power system applying SFCL (초전도한류기 적용계통에서의 RTDS 보호계전기 연계시험을 위한 기본연구)

  • Lee, Seung-Ryul;Yoon, Jae-Young;Kim, Jae-Ho;Lee, Byong-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.35-39
    • /
    • 2009
  • The study for a protective relay system is one of the important technical issues on the power system application of Superconducting Fault Current Limiter (SFCL). We used Real Time Digital Simulator(RTDS) to study the true interaction of the protection system with the power system. RTDS modeling of SFCL is necessary to the detailed protective relay tests. In this paper, we developed an analysis model using RTDS for studying the transient behavior of 22.9kV SFCL and carried out closed-loop testing of protective relays in distribution power system with the developed SFCL model. The SFCL model has the operation mechanism of 22.9kV hybrid SFCL being developed by LSIS and KEPRI in Korea. The parameters of the model are based on the test data of the real SFCL. Power system planners and operators can solve the expected problems in power system application of SFCL using protective relay testing results.