• Title/Summary/Keyword: real freedom

Search Result 343, Processing Time 0.023 seconds

Development of ABS ECU for a Bus using Hardware In-the-Loop Simulation

  • Lee, K.C.;Jeon, J.W.;Nam, T.K.;Hwang, D.H.;Kim, Y.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1714-1719
    • /
    • 2003
  • Antilock Brake System (ABS) is indispensable safety equipment for vehicles today. In order to develop new ABS ECU suitable for pneumatic brake system of a bus, a Hardware In-the-Loop Simulation (HILS) System was developed. In this HILS, the pneumatic brake system of a bus and antilock brake component were used as hardware. For the computer simulation, the 14-Degree of Freedom (DOF) bus dynamic model was constructed using the Matlab/Simulink software package. This model was compiled and downloaded in the simulation board, where the Power PC processor was used for real-time simulation. Additional commercial package, the ControlDesk was used to monitor the dynamic simulation results and physical signal values. This paper will focus on the procedure and results of evaluating the ECU in the HILS simulation. Two representative cases, wet basalt road and $split-{\mu}$ road, were used to simulate real road conditions. At each simulated road, the vehicle was driven and stopped under the help of the developed ECU. In each simulation, the dynamical behavior of the vehicle was monitored. After enough tests in the laboratory using HILS, the parameter-tuned ECU was equipped in a real bus, which was driven and stopped in the real test field in Korea. And finally, the experiment results of ABS equipped vehicle's dynamic behavior both in HILS test and in test fields were compared.

  • PDF

Effects of interface delay in real-time dynamic substructuring tests on a cable for cable-stayed bridge

  • Marsico, Maria Rosaria
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1173-1196
    • /
    • 2014
  • Real-time dynamic substructuring tests have been conducted on a cable-deck system. The cable is representative of a full scale cable for a cable-stayed bridge and it interacts with a deck, numerically modelled as a single-degree-of-freedom system. The purpose of exciting the inclined cable at the bottom is to identify its nonlinear dynamics and to mark the stability boundary of the semi-trivial solution. The latter physically corresponds to the point at which the cable starts to have an out-of-plane response when both input and previous response were in-plane. The numerical and the physical parts of the system interact through a transfer system, which is an actuator, and the input signal generated by the numerical model is assumed to interact instantaneously with the system. However, only an ideal system manifests a perfect correspondence between the desired signal and the applied signal. In fact, the transfer system introduces into the desired input signal a delay, which considerably affects the feedback force that, in turn, is processed to generate a new input. The effectiveness of the control algorithm is measured by using the synchronization technique, while the online adaptive forward prediction algorithm is used to compensate for the delay error, which is present in the performed tests. The response of the cable interacting with the deck has been experimentally observed, both in the presence of delay and when delay is compensated for, and it has been compared with the analytical model. The effects of the interface delay in real-time dynamic substructuring tests conducted on the cable-deck system are extensively discussed.

Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation

  • Chen, Pei-Ching;Chen, Po-Chang
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.719-732
    • /
    • 2020
  • Real-time hybrid simulation (RTHS) which combines physical experiment with numerical simulation is an advanced method to investigate dynamic responses of structures subjected to earthquake excitation. The desired displacement computed from the numerical substructure is applied to the experimental substructure by a servo-hydraulic actuator in real time. However, the magnitude decay and phase delay resulted from the dynamics of the servo-hydraulic system affect the accuracy and stability of a RTHS. In this study, a robust stability analysis procedure for a general single-degree-of-freedom structure is proposed which considers the uncertainty of servo-hydraulic system dynamics. For discussion purposes, the experimental substructure is a portion of the entire structure in terms of a ratio of stiffness, mass, and damping, respectively. The dynamics of the servo-hydraulic system is represented by a multiplicative uncertainty model which is based on a nominal system and a weight function. The nominal system can be obtained by conducting system identification prior to the RTHS. A first-order weight function formulation is proposed which needs to cover the worst possible uncertainty envelope over the frequency range of interest. Then, the Nyquist plot of the perturbed system is adopted to determine the robust stability margin of the RTHS. In addition, three common delay compensation methods are applied to the RTHS loop to investigate the effect of delay compensation on the robust stability. Numerical simulation and experimental validation results indicate that the proposed procedure is able to obtain a robust stability margin in terms of mass, damping, and stiffness ratio which provides a simple and conservative approach to assess the stability of a RTHS before it is conducted.

A study on the optimal tuning of the hydraulic motion driver parameter by using RCGA (유압 모션 제어기의 최적 제어인자 튜닝에 관한 연구)

  • Shin, Suk-Shin;Noh, Jong-Ho;Park, Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • In this study, 2 degree of freedom PID controller is added to the conventional feed-forward controller for the purpose of improving its limitations such as set-point of tracking performance and disturbance suppression performance in the conventional PID controller. And the controller parameters optimization as a Real Coded Genetic Algorithm (RCGA) is used. Simulation and experiments verify the performance of the controller.

Tracking and Stabilization of a NV System for Marine Surveillance (해상감시용 NV 시스템의 추종 및 안정화)

  • Hwang, Seung-Wook;Kim, Jung-Keun;Song, Se-Woon;Jin, Gang-Gyoo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • This paper presents the tracking and stabilization problem of a night vision system for marine surveillance. Both a hardware system and software modules are developed to control azimuth and elevation axes independently with compensation for ship motion. A two degree of freedom(2DOF) PID controller is designed and its parameters are tuned using a real-coded genetic algorithm(RCGA). Simulation demonstrates the effectiveness of the proposed method.

A real-time robust body-part tracking system for intelligent environment (지능형 환경을 위한 실시간 신체 부위 추적 시스템 -조명 및 복장 변화에 강인한 신체 부위 추적 시스템-)

  • Jung, Jin-Ki;Cho, Kyu-Sung;Choi, Jin;Yang, Hyun S.
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.411-417
    • /
    • 2009
  • We proposed a robust body part tracking system for intelligent environment that will not limit freedom of users. Unlike any previous gesture recognizer, we upgraded the generality of the system by creating the ability the ability to recognize details, such as, the ability to detect the difference between long sleeves and short sleeves. For the precise each body part tracking, we obtained the image of hands, head, and feet separately from a single camera, and when detecting each body part, we separately chose the appropriate feature for certain parts. Using a calibrated camera, we transferred 2D detected body parts into the 3D posture. In the experimentation, this system showed advanced hand tracking performance in real time(50fps).

  • PDF

A Study of a RealTime OS Based Motor Control System for Laparoscopic Surgery Robot (실시간 운영체제 기반의 복강경 수술 로봇의 모터제어 시스템에 관한 연구)

  • Song, Seung-Joon;Kim, Yong;Choi, Jae-Soon;Bae, Jin-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.218-221
    • /
    • 2006
  • This paper reports on a Realtime OS based motor control system for laparoscopic surgery robot which enables telesurgery and overcomes shortcomings with conventional laparoscopic surgery. The system has a conventional master-slave robot configuration and the control system consists of joint controllers, host controllers, and power units. The robot features (1) a compact slave robot with 5 DOF (Degree Of Freedom) expanding the workspace of each tool and increasing the number of tools operating simultaneously, and (2) direct 1:1 correspondence in the joint of master and slave robot that simplifies control algorithm and enhances reliability. Each master, slave and GUI (Graphical User Interface) host has a dedicated RTOS (RealTime OS), RTLinux-Pro (FSMLabs Inc., U.S.A.) Each master and slave controller set pair has a dedicated CAN (Controller Area Network) channel for control and monitoring signal communication. Total 4 pairs of the master/slave manipulators as current are monitored by one host controller for operation monitoring and higher level motion control. The system showed acceptable performance in both position control precision and master-slave motion synchronization and is now under further development for better safety and control fidelity for clinically applicable prototype.

  • PDF

LASER WELDING APPLICATION IN CAR BODY MANUFACTURING

  • Shin, Hyun-Oh;Chang, In-Sung;Jung, Chang-Ho
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.181-186
    • /
    • 2002
  • Laser welding application for car body manufacturing has many advantages in the stiffness and the lightness of vehicle, the productivity of assembly line, and the degree of freedom in design. This presentation will express the innovation of car body manufacturing including parameter optimization, process modeling, and system integration. In this application the investment for systems was cut down dramatically by real time switching over the laser path between two welding stations. Points of technical discussion are as follows: optimization of parameters such as laser power, robot speed and trajectory, compact and useful design of jig & fixture to assure welding quality for 3 sheet-layer zinc-coated steel, system integration between 4kW Nd:YAG laser device and the other systems, on-line real time welding quality monitoring system, perfect safety standards for high power laser, minimization of consumption costs such as arc lamp, protective glass for optic, etc. Laser welding has found a place on Hyundai's production plant in conjunction with the startup of mass production of new sports car, and this production system is the result of a collaboration of its engineers. Outer side sheets are joined to inner side sheets by 122 stitch welds totally. And the length is about 2.4meter.

  • PDF

A Study of Fake Design in the Fashion of the 2000s (2000년대 패션에 표현된 페이크 디자인 연구)

  • Park, Eun-Kyung
    • Journal of the Korean Society of Costume
    • /
    • v.60 no.3
    • /
    • pp.110-122
    • /
    • 2010
  • The purpose of this study is to analyze the expressional traits and internal meanings of fake design in the 2000s' fashion, based on study of art and design area. For achieving the purpose, this study performed related research works and a demonstrative analysis of fashion collection photographs. The scope of this study is from 2000 to 2009. The results are as follows. Fake design uses trompe-l'oeil which is an art technique related to the meanings of 'deceive or fool the eye'. This eye-deceiving technique has been used for a long time in the art, and particularly noticed as one of techniques of Surrealism. Art works using trompe-l'oeil express familiar and unreasonable world at the same time, and also the fusion of reality and fabrication. Fake design in design area of the 2000s makes people take daily life in unfamiliar way by unusualness and breaking the boundary between real and fake. By fake design, people can enjoy fun and a sense of freedom with amusement rather than unpleasant of being deceived. Fake design in the fashion of the 2000s uses eye-deceiving technique and also focuses on the concept of 'fake'. The expressional traits were categorized as realistic expression, surrealistic expression and fake value expression. The internal meanings were analyzed as breaking boundary between real and fake, rediscover dailiness, new attitude to traditional thinking. In conclusion, fake design in the fashion of the 2000s gives playfulness, fun, feeling of release and will be pursued continually.

RCGA-Based Tuning of the 2DOF PID Controller (2자유도 PID 제어기의 RCGA기반 동조)

  • Hwang, Seung-Wook;Song, Se-Hoon;Kim, Jung-Keun;Lee, Yun-Hyung;Lee, Hyun-Shik;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.948-955
    • /
    • 2008
  • The conventional PID controller has been widely employed in industry. However, the PID controller with one degree of freedom(DOF) can not optimize both set-point tracking response and disturbance rejection response at the same time. In order to solve this problem, a few types of 2DOF PID controllers have been suggested. In this paper, a tuning formula for a 2DOF PID controller is presented. The optimal parameter sets of the 2DOF PID controller are determined based on the first-order plus time delay process and a real-coded genetic algorithm(RCGA) such that the ITAE performance criterion is minimized. The tuning rule is then addressed using calculated parameter sets and another RCGA. A set of simulation works are carried out on three processes with time delay to verify the effectiveness of the proposed rule.