• Title/Summary/Keyword: random routing

Search Result 95, Processing Time 0.028 seconds

Design of the Fuzzy-based Mobile Model for Energy Efficiency within a Wireless Sensor Network

  • Yun, Dai Yeol;Lee, Daesung
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.136-141
    • /
    • 2021
  • Research on wireless sensor networks has focused on the monitoring and characterization of large-scale physical environments and the tracking of various environmental or physical conditions, such as temperature, pressure, and wind speed. We propose a stochastic mobility model that can be applied to a MANET (Mobile Ad-hoc NETwork). environment, and apply this mobility model to a newly proposed clustering-based routing protocol. To verify its stability and durability, we compared the proposed stochastic mobility model with a random model in terms of energy efficiency. The FND (First Node Dead) was measured and compared to verify the performance of the newly designed protocol. In this paper, we describe the proposed mobility model, quantify the changes to the mobile environment, and detail the selection of cluster heads and clusters formed using a fuzzy inference system. After the clusters are configured, the collected data are sent to a base station. Studies on clustering-based routing protocols and stochastic mobility models for MANET applications have shown that these strategies improve the energy efficiency of a network.

A loading and sequencing problem in a random FMS (다목적을 고려한 FMS작업할당/경로선정과 분배규칙에 관한 연구)

  • 장영기;조재용
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.201-210
    • /
    • 1996
  • Although FMS implementation in Korea is not yet mature, the worldwide empirical data shows the diffusion of FMS is inevitable in near future. As the reletionships between the high capital cost and the relative benefits and advantages are complex to analyse, it is rather beneficial to prepare the effective operation strategies which exploit the FMS flexibility, such as machine loading with alternative routing and dispatching rules. This paper shows the formulation applying a goal programming model for the loading problem with objectives of minimizing the production cost and maximizing the machine utilization, including constraints such as machine tool capacity and demands, etc. A realistic random FMS model is developed for illustration. Since loading and dispatching are a composite of two interdependent tasks, simulation is made to investigate the interactions between the two.

  • PDF

Design of Speed Up Switch Using Banyan-Network with Sorting Network (정렬 반얀망을 이용한 고속 스위치 설계)

  • 최상진;권승탁
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.281-284
    • /
    • 2001
  • In this paper, we design the Sorting-Banyan network with an efficient buffer and sorting management schema that makes switch be capable of supporting delay sensitive as well as loss sensitive. The proposed switching network is remodeled that based on Batcher-banyan network that have eight input and output ports The structure of designed switching network is constructed of modified banyan network with 2-way routing paths and two plane sorting networks. we have analysed the maximum throughput of the switch, under the uniform random traffic load, the FIFO discipline has increased by about 11% when we compare the switching system with the input buffering system.

  • PDF

A Study about Finding Optimal Path Using RAS Dynamic Programming (RAS Dynamic Programming을 이용한 최적 경로 탐색에 관한 연구)

  • Kim, Jeong-Tae;Lee, John-Tak;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1736-1737
    • /
    • 2007
  • Significant increase of container flows in marine terminals requires more efficient automatic port systems. This paper presents a novel routing and collision avoidance algorithm of linear motor based shuttle cars using random access sequence dynamic programming (RAS DP). The proposed RAS DP is accomplished online for determining optimal paths for each shuttle car.

  • PDF

Cluster-based Energy-Efficient Routing Protocol using Message Reception Success Rate (메시지 수신 성공률을 이용한 클러스터 기반의 에너지 효율적인 라우팅 프로토콜)

  • Jang, You-Jin;Choi, Young-Ho;Jang, Jae-Woo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1224-1228
    • /
    • 2010
  • The existing cluster-based routing protocols have some problems. Firstly, because of selecting cluster head at random, they occur a node concentration problem. Secondly, they have a low reliability for data communication due to the less consideration of node communication range. Finally, data communication overhead is greatly increased because of sending all sensor node information to sink node for constructing clusters. To solve these problems, we in this paper, propose a cluster-based routing protocol using message reception success rate. Firstly, to solve the node concentration problem, we design a cluster head selection algorithm based on node connectivity and devise cluster spliting/merging algorithms. Secondly, to guarantee data communication reliability, we use message reception success rate. Finally, to reduce data communication overhead, we use only neighbor nodes information at both cluster construction and cluster head selection.

The Routing Algorithm for Wireless Sensor Networks with Random Mobile Nodes

  • Yun, Dai Yeol;Jung, Kye-Dong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.38-43
    • /
    • 2017
  • Sensor Networks (WSNs) can be defined as a self-configured and infrastructure-less wireless networks to monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants and to cooperatively pass their data through the network to a main location or base-station where the data can be observed and analyzed. Typically a wireless sensor network contains hundreds of thousands of sensor nodes. The sensor nodes can communicate among themselves using radio signals. A wireless sensor node is equipped with sensing and computing devices, radio transceivers and power components. The individual nodes in a wireless sensor network (WSN) are inherently resource constrained: they have limited processing speed, storage capacity, communication bandwidth and limited-battery power. At present time, most of the research on WSNs has concentrated on the design of energy- and computationally efficient algorithms and protocols In order to extend the network life-time, in this paper we are looking into a routing protocol, especially LEACH and LEACH-related protocol. LEACH protocol is a representative routing protocol and improves overall network energy efficiency by allowing all nodes to be selected to the cluster head evenly once in a periodic manner. In LEACH, in case of movement of sensor nodes, there is a problem that the data transmission success rate decreases. In order to overcome LEACH's nodes movements, LEACH-Mobile protocol had proposed. But energy consumption increased because it consumes more energy to recognize which nodes moves and re-transfer data. In this paper we propose the new routing protocol considering nodes' mobility. In order to simulate the proposed protocol, we make a scenario, nodes' movements randomly and compared with the LEACH-Mobile protocol.

On Alternative Path Setup for Directional Antenna Based Mobile Ad Hoc Networks (방향성 안테나에 기반을 둔 이동 애드 혹 네트워크에서의 대체 경로 설정)

  • Tscha, Yeong-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1165-1174
    • /
    • 2007
  • Mobile ad hoc networks suffer from the re-construction of the routing path as a node on the path moves away and/or fails. In this paper we propose a multipath routing scheme, designed for the network based on the directional antennas, in which a new path is quickly recovered by do-touring to an alternative neighbor called braid. Simulations are conducted in random networks with 50 nodes uniformly deployed in a $1,000m{\times}1,000M$ area where, all nodes have a transmission range of 250m and the average node moving speed varies from 0 to 10m/s. The proposed approach under the ideal antenna with K(>1) directional sectors achieves better results compared with the case of K=1, the omnidirectional antenna model, in terms of the metrics: packet delivery ratio and average number of hops for the routing paths. As further study, a scheme to alleviate the heavy amount of latency accompanied by the rout setup is urgently required.

  • PDF

Design of Stochastic Movement Model Considering Sensor Node Reliability and Energy Efficiency

  • Cho, Do-Hyeoun;Yeol, Yun Dai;Hwang, Chi-Gon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.156-162
    • /
    • 2020
  • Wireless Sensor Network (WSN) field is mainly studied to monitor and characterize large-scale physical environments to track various environmental or physical conditions, such as temperature, pressure, wind speed and humidity. WSN can be used in various applications such as wild surveillance, military target tracking and monitoring, dangerous environmental exploration and natural disaster relief. We design probabilistic mobile models that apply to mobile ad hoc network mobile environments. A probabilistic shift model proposed by dividing the number of moving nodes and the distance of travel into two categories to express node movement characteristics. The proposed model of movement through simulation was compared with the existing random movement model, ensuring that the width and variation rate of the first node node node node (FND) was stable regardless of the node movement rate. In addition, when the proposed mobile model is applied to the routing protocol, the superiority of network life can be verified from measured FND values. We overcame the limitations of the existing random movement model, showing excellent characteristics in terms of energy efficiency and stable in terms of changes in node movement.

Resource Allocation and IP Networking for Next Generation Military Satellite Communications System (차기 군 위성통신 체계를 위한 자원 할당 및 IP 네트워킹)

  • Noh, Hong-Jun;Go, Kwang-Chun;Lee, Kyu-Hwan;Kim, Jae-Hyun;Lim, Jae-Sung;Song, Ye-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.939-954
    • /
    • 2013
  • Korean military is developing the next generation military satellite communications system in order to achieve the requirements of future military satellite communication such as high speed, high capacity, survivability, all IP networking, and on-the-move. In this paper, we survey and analyze the research interests about optimal resource allocation and IP networking such as MF-TDMA, random access, satellite IP routing, and PEP. Conventional researches have focused on the increase in channel throughput and efficiency. In addition to these measurements, we consider heterogeneous satellite terminals, full mesh topology, distributed network, anti-jamming, and the like which are the special characteristics of the next generation military satellite communications system. Based on this, we present key research issues and evaluation on the issues by simulation.

Stochastic Mobility Model Design in Mobile WSN (WSN 노드 이동 환경에서 stochastic 모델 설계)

  • Yun, Dai Yeol;Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1082-1087
    • /
    • 2021
  • In MANET(mobile ad hoc network), Mobility models vary according to the application-specific goals. The most widely used Random WayPoint Mobility Model(RWPMM) is advantageous because it is simple and easy to implement, but the random characteristic of nodes' movement is not enough to express the mobile characteristics of the entire sensor nodes' movements. The random mobility model is insufficient to express the inherent movement characteristics of the entire sensor nodes' movements. In the proposed Stochastic mobility model, To express the overall nodes movement characteristics of the network, the moving nodes are treated as random variables having a specific probability distribution characteristic. The proposed Stochastic mobility model is more stable and energy-efficient than the existing random mobility model applies to the routing protocol to ensure improved performances in terms of energy efficiency.