DOI QR코드

DOI QR Code

Resource Allocation and IP Networking for Next Generation Military Satellite Communications System

차기 군 위성통신 체계를 위한 자원 할당 및 IP 네트워킹

  • 노홍준 (아주대학교 정보및컴퓨터공학과 이동통신연구실) ;
  • 고광춘 (아주대학교 전자공학과 무선인터넷 연구실) ;
  • 이규환 (아주대학교 전자공학과 무선인터넷 연구실) ;
  • 김재현 (아주대학교 전자공학과 무선인터넷 연구실) ;
  • 임재성 (아주대학교 정보및컴퓨터공학과 이동통신연구실) ;
  • 송예진 (국방과학연구소)
  • Received : 2013.09.13
  • Accepted : 2013.10.31
  • Published : 2013.11.30

Abstract

Korean military is developing the next generation military satellite communications system in order to achieve the requirements of future military satellite communication such as high speed, high capacity, survivability, all IP networking, and on-the-move. In this paper, we survey and analyze the research interests about optimal resource allocation and IP networking such as MF-TDMA, random access, satellite IP routing, and PEP. Conventional researches have focused on the increase in channel throughput and efficiency. In addition to these measurements, we consider heterogeneous satellite terminals, full mesh topology, distributed network, anti-jamming, and the like which are the special characteristics of the next generation military satellite communications system. Based on this, we present key research issues and evaluation on the issues by simulation.

한국군은 미래 군 위성통신의 요구 사항에 걸맞은 한국형 군 위성통신 체계 구축을 위하여 고속대용량, 생존성 보장, All IP 통신, 기동성 보장과 같은 발전 방향을 목표로 차기 군 위성통신 체계를 개발하고 있다. 본 논문은 차기 군 위성통신 체계의 최적 자원 할당과 IP 네트워킹 기술에 집중하여, MF-TDMA 자원 할당, 랜덤 액세스, 위성/지상 연동망 구조, 그리고 PEP의 세부 연구 분야에 대하여 연구 내용 조사 및 분석을 실시하였다. 각 연구분야에 대한 기존 연구는 채널 효율 및 처리량의 증가를 위한 연구가 주를 이루고 있다. 이에 더하여 차기 군 위성통신 체계를 위한 연구는 이기종 단말, Full Mesh 환경, 분산망, 위성/지상 연동망, 항재밍 등의 특성 들을 고려해야 한다. 본 논문에서는 이러한 특수성을 고려하여 각 분야 별 핵심 연구 이슈들을 제시하고, 주요 이슈에 대하여는 모의실험을 통한 결과를 제시하였다.

Keywords

References

  1. S. W. Han and J. W. Seo, "Future extension of the next generation military satellite," Inform. Commun. Mag., vol. 26, no. 3, pp. 24-31, Feb. 2009.
  2. ETSI, Digital Video Broadcasting (DVB); Second Generation DVB Interactive Satellite System (DVB-RCS2); Part 2: Lower Layers Satellite Specification, ETSI EN 301 545-2, Jan. 2012.
  3. J. Wiss and R. Gupta, "The WIN-T MF-TDMA mesh network centric waveform," in Proc. IEEE Military Commun. Conf. (MILCOM 2007), pp. 1-6, Orlando, U.S.A., Oct. 2007.
  4. ETSI, Satellite Earth Stations and Systems (SES); Broadband Satellite Multimedia (BSM); Connection Control Protocol (C2P) for DVB-RCS; Background information, ETSI TR 102 603 V1.1.1, Jan. 2009.
  5. G. Giambene (Ed.), Resource Management in Satellite Networks: Optimization and Cross-Layer Design, Springer, 2010.
  6. ETSI, Digital Video Broadcasting (DVB); User Guidelines for the second generation system for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2), ETSI TR 102 376 V1.1.1, Feb. 2005.
  7. A. Pietrabissa and A. Fiaschetti, "Dynamic uplink frame optimization with adaptive coding and modulation in DVB-RCS2 satellite networks," Int. J. Satellite Commun. Network, vol. 31, no. 2, pp. 123-239, May/June 2013. https://doi.org/10.1002/sat.1024
  8. A. Morell, G. Seco-Granados, and M. A. Vazquez-Castro, "Cross-layer design of dynamic bandwidth allocation in DVB-RCS," IEEE Syst. J., vol. 2, no. 1, pp. 62-73, Mar. 2008. https://doi.org/10.1109/JSYST.2007.914812
  9. K. D. Lee and K. N. Chang, "A real-time algorithm for timeslot assignment in multirate return channels of interactive satellite multimedia networks," IEEE J. Sel. Areas Commun. (JSAC), vol 22, no. 3, pp. 518-528, Apr. 2004. https://doi.org/10.1109/JSAC.2004.823433
  10. D. K. Petraki, M. P. Anastasopoulos, A. D. Panagopoulos, and P. G. Cottis, "Dynamic resource calculation algorithm in MF-TDMA satellite networks," in Proc. Mobile and Wireless Commun. Summit 2007, pp. 1-5, Budapest, Hungary, July 2007.
  11. W. Soon, H. W. Park, H. S. Lee, Y. S. Yoo, and B. G. Jung, "A power control-based MF-TDMA resource allocation scheme for next generation military satellite," J. Korea Inst. Commun. Inform. Sci. (KICS), vol. 37c, no. 11, pp. 1138-1149, Dec. 2012. https://doi.org/10.7840/kics.2012.37C.11.1138
  12. J. M. Park, E. K. P. Chong, H. J. Siegel, and S. D. Jones, "Allocation of QoS connections in MF-TDMA satellite systems: a two-phase approach," IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 177-190, Jan. 2005. https://doi.org/10.1109/TVT.2004.838836
  13. N. Yazdani, "Multi-frequency time-division multiple-access (MF-TDMA) resource packing," in Proc. IEEE Military Commun. Conf. (MILCOM 2008), pp. 1-8, San Diego, U.S.A., Nov. 2008.
  14. H. Yao, T. Royster IV, J. McLamb, M. Mustafa, and N. Yazdani, "Jitter-aware time-frequency resource allocation and packing algorithm," in Proc. IEEE Military Commun. Conf. (MILCOM 2009), pp. 1-6, Boston, U.S.A., Oct. 2009.
  15. K. K. Kim, H. J. Noh, and J. S. Lim, "A satellite data link waveform based on Link-16," Telecommun. Review, vol. 20, no. 2, pp. 218-228, Apr. 2010.
  16. N. Celandroni, E. Ferro, and F. Potorti, "DRIFS-TDMA: a proposal for a satellite access distributed control algorithm for multimedia traffic in a faded environment," Int. J. Satellite Commun., vol. 15, no. 5, pp. 227-235, Sep./Oct. 1997. https://doi.org/10.1002/(SICI)1099-1247(199709/10)15:5<227::AID-SAT578>3.0.CO;2-H
  17. N. Celandroni, E. Ferro, and F. Potorti, "Feeders-TDMA: a distributed-control algorithm for satellite channel capacity assignment in a mixed traffic and faded environment," Int. J. Satellite Commun., vol. 15, no. 4, pp. 185-195, July/Aug. 1997. https://doi.org/10.1002/(SICI)1099-1247(199707/08)15:4<185::AID-SAT579>3.0.CO;2-L
  18. O. del R. Herrero and R. De Gaudenzi, "Design guidelines for advanced random access protocol," in Proc. 30th AIAA Int. Commun. Satellite Syst. Conf. (ICSSC), pp. 1-15, Ottawa, Canada, Sep. 2012.
  19. S. H. Nam, H. W. Kim, K. S. Kang, and B. J. Ku, "Broadcasting and communications convergence technology trends via satellite," Electron. Telecommun. Trends, vol. 25, no. 2, pp. 31-41, Apr. 2010.
  20. E. Casini, R. De Gaudenzi, and O. del R. Herrero, "Contention resolution diversity slotted ALOHA (CRDSA): an enhanced random access scheme for satellite access packet networks," IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1408-1419, Apr. 2007. https://doi.org/10.1109/TWC.2007.348337
  21. G. Liva, "Graph-based analysis and optimization of contention resolution diversity slotted ALOHA," IEEE Trans. Commun., vol. 59, no. 2, pp. 477-487, Feb. 2011. https://doi.org/10.1109/TCOMM.2010.120710.100054
  22. E. Paolini, G. Liva, and M. Chiani, "High throughput random access via codes on graphs: coded slotted ALOHA," in Proc. IEEE Int. Conf. Commun. (ICC 2011), pp. 1-6, Kyoto, Japan, June 2011.
  23. M. E. Rivero-Angeles, D. Lara-Rodriquez, and F. A. Cruz-Perez, "Random-access control mechanisms using adaptive traffic load in ALOHA and CSMA strategies for EDGE," IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 1160-1186, May 2005. https://doi.org/10.1109/TVT.2005.844657
  24. Z. Naor and H. Levy, "A centralized dynamic access probability protocol for next generation wireless network," in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM 2001), pp. 767-775, Anchorage, U.S.A., Apr. 2001.
  25. M. W. Lee, J. K. Lee, J. J. Lee, and J. S. Lim, "R-CRDSA: reservation-contention resolution diversity slotted ALOHA for satellite networks," IEEE Commun. Lett., vol. 16, no. 10, pp. 1576-1579, Oct. 2012. https://doi.org/10.1109/LCOMM.2012.082012.120573
  26. O. del R. Herrero and R. De Gaudenzi, "A high efficiency scheme for quasi-real-time satellite mobile messaging systems," in Proc. 10th Int. Workshop Signal Process. Space Commun. (SPSC 2008), pp. 1-9, Rhodes Island, Greece, Oct. 2008.
  27. C. Kissling, "Performance enhancements for asynchronous random access protocols over satellite," in Proc. IEEE Int. Conf. Commun. (ICC 2011), pp. 1-6, Kyoto, Japan, June 2011.
  28. Z. Gao, Q. Guo, and Z. Na, "Novel optimized routing algorithm for LEO satellite IP networks," J. Syst. Eng. Electron., vol. 22, no 6, pp. 917-925, Dec. 2011. https://doi.org/10.3969/j.issn.1004-4132.2011.06.007
  29. Y. Lu, Y. Zhao, F. Sun, and H. Li, "Dynamic fault-tolerant routing based on FSA for LEO satellite networks," IEEE Trans. Comput., vol. 62, no. 10, pp. 1945-1958, Oct. 2013. https://doi.org/10.1109/TC.2012.127
  30. N. Courville, H. Bischl, and J. Zeng, "Critical issues of onboard switching in DVB-S/RCS broadband satellite networks," IEEE Wireless Commun., vol. 12, no. 5, pp. 28-36, Oct. 2005. https://doi.org/10.1109/MWC.2005.1522101
  31. ETSI, Digital Video Broadcasting (DVB); Second Generation DVB Interactive Satellite System (DVB-RCS2);Part 3: Higher Layers Satellite Specification, ETSI TS 101 545-3, May 2012.
  32. K. C. Go and J. H. Kim, "Design of routing scenarios for terrestrial network interworking with satellite network," in Proc. Int. Conf. Space, Aero. and Navi. Electron. (ICSANE 2012), pp. 207-210, Incheon, Korea, Oct. 2012.
  33. J. Moy, OSPF Version 2, RFC 2328, Apr. 1998.
  34. J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, Performance Enhancing Proxies Intended to Mitigate Link-Related Degradations, RFC 3135, June 2001.
  35. H. Balakrishnan, V. N. Padmanabhan, G. Fairhurst, and M. Sooriyabandara, TCP Performance Implications of Network Path Asymmetry, RFC 3449, Dec. 2002.
  36. Consultative Committee for Space Data Systems (CCSDS), Space Communications Protocol Specification - Transport Protocol (SCPS-TP), CCSDS 714.0-B-2, Oct. 2006.
  37. K. Y. Wang and S. K. Tripathi, "Mobile-end transport protocol: an alternative to TCP/IP over wireless links," in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM 1998), pp. 1048-1055, San Francisco, U.S.A., Mar. 1998.
  38. F. Sun, V. O. K. Li, and S. C. Liew, "Design of SNACK mechanism for wireless TCP with new snoop," in Proc. IEEE Wireless Commun. Networking Conf. 2004 (WCNC 2004), pp. 1051-1056, Atlanta, U.S.A., Mar. 2004.
  39. G. Pelletier and K. Sandlund, Robust Header Compression Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-Lite, RFC 5225, Apr. 2008.
  40. C. Caini, R. Firrincieli, and D. Lacamera, "PEPsal: a performance enhancing proxy for TCP satellite connections," in Proc. IEEE Veh. Technol. Conf. (VTC 2006-Spring), pp. 2607-2611, Melbourne, Australia, May 2006.
  41. P. Davern, N. Nashid, and C. J. Sreenan, "HTTPEP: a HTTP performance enhancing proxy for satellite systems," Int. J. Next-Generation Comput., vol. 2, no. 3, pp. 242-256, Nov. 2011.
  42. C. P. Fu and S.C. Liew, "TCP Veno: TCP enhancement for transmission over wireless access networks," IEEE J. Sel. Areas Commun. (JSAC), vol. 21, no. 2, pp. 216-228, Feb. 2003. https://doi.org/10.1109/JSAC.2002.807336
  43. C. Caini and R. Firrincieli, "TCP Hybla: a TCP enhancement for heterogeneous networks," Int. J. Satellite Commun. Network. (IJSCN), vol. 22, no. 5, pp. 547-566, Sep./Oct. 2004. https://doi.org/10.1002/sat.799
  44. T. F. Sewell, R. Gopal, "Implementing SATCOM-on-the-move in the land environment - Relating technical solutions to operational reality," in Proc. 2011 Military Commun. Inform. Syst. Conf. (MilCIS 2011), pp. 1-6, Canberra, Australia, Nov. 2011.
  45. V. Weerackody and E. G. Cuevas, "Technical challenges and performance of satellite communications on-the-move systems," Johns Hopkins Applied Phy. Lab. (APL) Techol. Dig., vol. 30, no. 2, pp. 113-121, Aug. 2011.
  46. C. Caini, R. Firrincieli, and M. Livini, "DTN bundle layer over TCP: retransmission algorithms in the presence of channel disruptions," J. Commun., vol. 5, no. 2, pp. 106-116, Feb. 2010.
  47. K. H. Lee, S. H. Kang, C. H. Lee, and J. H. Kim, "AL-FEC mechanism for satellite on-the-move networks," in Proc. IEEK Summer Conf., pp. 554-555, Jeju Island, Korea, July 2013.