• Title/Summary/Keyword: radio-wave propagation

Search Result 120, Processing Time 0.022 seconds

Measures to improve mobile communication propagation environment by linking small cells in a small closed environment (소규모 폐쇄 환경에서 스몰 셀을 연계한 이동통신 전파환경 개선방안)

  • YounGjin kim;Beomseok Chae;HyungJin kim
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.52-59
    • /
    • 2024
  • This paper proposes a plan to improve the reception radio environment of the mobile terminal and maintain a constant reception electric field by using small cells in a small closed environment. In order to configure an efficient communication infrastructure for small cells, both ends of wireless transmission and reception of an Ethernet-based wireless video recording system are connected using an L2 switch. The small cell connected to the receiving side L2 switch shares the wireless network section of the wireless video recording system and connects to the transmitting side L2 switch. After that, when it is normally linked to FMS, a management system for small cells, through the Internet network, the output of small cells is checked. In order to verify the results, a proposed network is formed on the elevator inside the building with a poor radio wave environment, and the radio wave environment is measured before and after the small cell application in the section where the elevator operates. As a result, the main parameters of the radio wave environment in all sections of the elevator are improved, as well as a constant receiving electric field strength within the moving elevator.

Performance Analysis of DS-CDMA System in Millimeter-Wave Fading Channel (밀리미터파 페이딩 채널에서 DS-COMA시스템의 성능 분석)

  • Kang, Heau-Jo;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.544-550
    • /
    • 2009
  • In this paper, we proposed the radio wave propagation characteristics of the next-generation ultrafast wireless communication system in millimeter-wave fading channel. For considering doppler shift and Rayleigh fading simultaneously, the fading simulator of Jakes model implemented and analyzed the performance of the next-generation wireless communication system. In addition, the error rate characteristics of DS-CDMA system analyzed in the millimeter-wave fading channel and the system performance improved by coding technique and diversity technique.

  • PDF

DGPS service analysis in the korean coastal ferry route (국내 연안 여객선 항로에서의 DGPS 서비스 분석)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2073-2078
    • /
    • 2014
  • Based on the DGPS radio wave measurement in the coast of the yellow-sea, south-sea and east-sea, the DGPS service regions in the korean coastal ferry route are analyzed in this paper. The impact of obstacles on the propagation due to the archipelago and island regions are measured and analyzed in the point of service region. The ocean-based DGPS reference stations provide the wide DGPS ocean service regions with signal strength more than $40dB{\mu}V/m$ and signal-to-noise ratio more than 10 dB. Based on the overlapping of the service regions between the DGPS reference stations, the DGPS services with good quality are provided in the coastal ferry route segments. In case of regions where the propagation obstacles are scattered, the increasingly good service can be provided under conditions of output power reinforcement and antenna efficiency enhancement.

A Study of Radio Wave Propagation Criterion for the Cognitive Radio System using Interference Analysis in Broadcasting Band (방송대역에서 간섭분석을 이용한 무선인지 시스템의 전파 전달기준에 관한 연구)

  • Choi, Joo-Pyoung;Duy, Vo Quoc;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.1014-1022
    • /
    • 2009
  • In this paper, interference analysis is carried out to obtain the operating criterion and coexistence condition between digital television devices and cognitive radio-based mobile wimax devices in the UHF (Ultra High Frequency) broadcasting frequency bands. To this end, an efficient interfering calculation tool known as SEAMCAT (Spectrum Engineering Advanced Monte-Carlo Analysis Tool) is employed to acquire the coexistence criterions between heterogeneous radio links operating in the same portion of spectrum. As a result, these criterions will be used to achieve interference temperature limit level applied to interference temperature model for analyzing the capacity of cognitive radio receivers accurately.

Time Domain Response of Random Electromagnetic Signals for Electromagnetic Topology Analysis Technique

  • Han, Jung-hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • Electromagnetic topology (EMT) technique is a method to analyze each component of the electromagnetic propagation environment and combine them in the form of a network in order to effectively model the complex propagation environment. In a typical commercial communication channel model, since the propagation environment is complex and difficult to predict, a probabilistic propagation channel model that utilizes an average solution, although with low accuracy, is used. However, modeling techniques using EMT technique are considered for application of propagation and coupling analysis of threat electromagnetic waves such as electromagnetic pulses, radio wave models used in electronic warfare, local communication channel models used in 5G and 6G communications that require relatively high accuracy electromagnetic wave propagation characteristics. This paper describes the effective implementation method, algorithm, and program implementation of the electromagnetic topology (EMT) method analyzed in the frequency domain. Also, a method of deriving a response in the time domain to an arbitrary applied signal source with respect to the EMT analysis result in the frequency domain will be discussed.

Integrative Modeling of Wireless RF Links for Train-to-Wayside Communication in Railway Tunnel

  • Pu, Shi;Hao, Jian-Hong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • In railway tunnel environment, the reliability of a high-data-rate and real-time train-to-wayside communication should be maintained especially when high-speed train moves along the track. In China and Europe, the communication frequency around 900 MHz is widely used for railway applications. At this carrier frequency band, both of the solutions based on continuously laid leaky coaxial cable (LCX) and discretely installed base-station antennas (BSAs), are applied in tunnel radio coverage. Many available works have concentrated on the radio-wave propagation in tunnels by different kinds of prediction models. Most of them solve this problem as natural propagation in a relatively large hollow waveguide, by neglecting the transmitting/receiving (Tx/Rx) components. However, within such confined areas like railway tunnels especially loaded with train, the complex communication environment becomes an important factor that would affect the quality of the signal transmission. This paper will apply a full-wave numerical method to this case, for considering the BSA or LCX, train antennas and their interacted environments, such as the locomotive body, overhead line for power supply, locomotive pantograph, steel rails, ballastless track, tunnel walls, etc.. Involving finite-difference time-domain (FDTD) method and uni-axial anisotropic perfectly matched layer (UPML) technique, the entire wireless RF downlinks of BSA and LCX to tunnel space to train antenna are precisely modeled (so-called integrative modeling technique, IMT). When exciting the BSA and LCX separately, the field distributions of some cross-sections in a rectangular tunnel are presented. It can be found that the influence of the locomotive body and other tunnel environments is very significant. The field coverage on the locomotive roof plane where the train antennas mounted, seems more homogenous when the side-laying position of the BSA or LCX is much higher. Also, much smoother field coverage solution is achieved by choosing LCX for its characteristic of more homogenous electromagnetic wave radiation.

Integration of Geophysical Properties and Geospatial Information for Telecommunication Modeling

  • Kim, Jeong-Woo;Lee, Dong-Cheon;Pack, Jeong-Ki;Yom, Jae-Hong;Kwon, Jay-Hyon;Jeong, Nam-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.745-745
    • /
    • 2002
  • Both geophysical and geospatial data provide important information in the establishment of the optimal telecommunication systems especially in the mobile telecommunication environment. The objective of this study is to utilize geophysical properties and geospatial information in the analysis of the telecommunication environment through point-to-point wave property modeling. Geophysical properties associated with wave propagation parameters of the earth surface were analyzed based on hierarchical land classification using Landsat ETM+ and IKONOS images. Three-dimensional geospatial information was obtained by processing stereo aerial images. The results show that the accurate geospatial information and reliable geosphysical property of the surface improve the prediction of receiving power of the receivers located near corners of the buildings where diffractions occur. The wave property model developed from accurate telecommunication environment could be applied to optimal cell planning and delay time analysis.

  • PDF

Propagation Chracteristics of Leaky Coaxial Cable with Periodic Slots (주기적인 슬롯을 갖는 누설동축 케이블의 전파 특성)

  • 홍용인;김현준;맹명채;양기곤;김정기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.2
    • /
    • pp.24-33
    • /
    • 1993
  • In indoor radio systems, vehicular communication systems, and land mobile systems, a very important problem is that of maintaing stable communications at all locations. Therefore solutions for the indoor propagation problem are an important aspects of the mobile communication system. Leaky coaxial cables finding increasing use in communications systems involving mines, tunnels, railroads, and highways, and in new obstacle detection, or guided radar, schemes for ground transpor- tation and perimeter surveilance. In this paper a leaky coaxial cable having periodic slots in the outer conductor is described to obtain the propagation modes in the various environments. We use an essentric cylindrical model to develop the theory for surface-wave propagation on the cable. Numerical Results are also included for the propagation constants, field distribution and impedance as functions of various parameters. First, we derive the electromagnetic equation for leaky coaxial cable having periodic slots using mode-matching method and Floguet's theorem, and then find various modes, propagation constants, field distribution, etc.

  • PDF

Analysis of Propagation Characteristics according to the Change of Transmitter-Receiver Location in Indoor Environment (실내 환경에서 송수신기 위치 변화에 따른 전파 전달 특성 분석)

  • Lee, Seong-Hun;Cho, Byung-Lok;Lee, Hwa-Choon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.211-218
    • /
    • 2020
  • The radio wave propagation characteristics of the transmitter and receiver position change in the indoor environment were predicted through simulation, then the results obtained through the transmission loss measurement were compared and analyzed with the simulation results. The conference room was chosen as the environment for measuring transmission loss, and the radio transmission characteristics of the two environments were compared by selecting the exhibition hall without interior decorations and fixtures. In each indoor environment, the position of the transmitter chose two cases. One located in the center of the front wall and the other in the center of the side wall, and the position of the receiver moved along the centerline of the conference room and the side wall, measuring the receiving power. For each change in transmitter-receiver position, received power of 3GHz and 6GHz band were measured and compared with the simulation forecast results. The changes in received power at each receiving point were analyzed according to the location of the transmitter and the frequency band variation.

WAVE Communication-based V2I Channel Modeling

  • Lee, Soo-Hwan;Kim, Jong-Chan;Lim, Ki-Taek;Cho, Hyung-Rae;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.899-905
    • /
    • 2016
  • Wireless access in vehicle environment (WAVE) communication is currently being researched as core wireless communication technologies for cooperative intelligent transport systems (C-ITS). WAVE consists of both vehicle to vehicle (V2V) communication, which refers to communication between vehicles, and vehicle to infrastructure (V2I) communication, which refers to the communication between vehicles and road-side stations. V2I has a longer communication range than V2V, and its communication range and reception rate are heavily influenced by various factors such as structures on the road, the density of vehicles, and topography. Therefore, domestic environments in which there are many non-lines of sight (NLOS), such as mountains and urban areas, require optimized communication channel modeling based on research of V2I propagation characteristics. In the present study, the received signal strength indicator (RSSI) was measured on both an experience road and a test road, and the large-scale characteristics of the WAVE communication were analyzed using the data collected to assess the propagation environment of the WAVE-based V2I that is actually implemented on highways. Based on the results of this analysis, this paper proposes a WAVE communication channel model for domestic public roads by deriving the parameters of a dual-slope logarithmic distance implementing a two-ray ground-reflection model.