• Title/Summary/Keyword: radio-frequency amplifier

Search Result 126, Processing Time 0.028 seconds

Design of the Wideband Power Amplifier for a Frequency Hopping Radio (주파수 도약 무전기용 광대역 전력증폭기 설계)

  • Lee, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.195-199
    • /
    • 2006
  • A wideband power amplifier for a frequency hopping radio unit is designed. To obtain higher efficiency, it is designed for the Class B mode overdrived. The broadband transformer and feedback circuits are adapted to obtain broadband characteristics. The designed amplifier is simulated using the ADS, which is a CAD software from HPEEsof, Simulation results of the designed amplifier are well suited for the design specifications. The designed amplifier are fabricated. Measured results of the fabricated amplifier well agreed with the simulation results and are in good agreement with the predicted performance.

  • PDF

Frequency Adaptive High Efficiency Class-E Amplifier in RFID System (RFID 시스템에 사용되는 주파수 적응형 고효율 Class-E 증폭기)

  • Kwan, Sang-Gun;Son, Gang-Ho;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.351-357
    • /
    • 2010
  • This paper proposes the adaptive class-E power amplifier with maintaining high power added efficiency (PAE) to apply RFID and wireless communication system. This switch mode amplifier is used a microprocessor to control a resonator circuits and to maintain high efficiency in case of input frequency variation. To validate the adaptive amplifier operation, which is a 450MHz operating frequency and a 100MHz bandwidth, the class E amplifier is implemented. As a result, the adaptive amplifier is maintained above 60% efficiency in frequency range and has a 74.8% maximum efficiency.

Noise analysis and simulation of the audio circuits (Audio 회로의 잡음해석과 시뮬레이숀)

  • 차균현;이근철
    • 전기의세계
    • /
    • v.29 no.12
    • /
    • pp.798-803
    • /
    • 1980
  • A computer program for noise analysis of the audio circuit is developed. The application of the program to the equalizer, low frequency amplifier of radio circuit and cascaded amplifier show good results. The general noise analysis method for cascade operational amplifier is presented. The noise spectral power density is calculated for a resonator active filter.

  • PDF

An Analysis of Wideband Digital Radio Frequency Signal Reproduction Characteristics (광대역 디지털 고주파 신호 복제 특성 분석)

  • Chae Gyoo-Soo;Lim Joong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.401-406
    • /
    • 2005
  • Digital memory circuits have been developed very fast according to the progress of semiconductor technology. But it was very difficult to memorize a wideband radio frequency signals. Many years ago, an analog frequency memory loop(FML) was used for store of radio frequency signal and the digital radio frequency memory was made according to the development of wideband amplifier and high speed sampler. We present a design of wideband digital radio frequency reproduction device using ladder circuit and the simulation results with respect to the sampling speed in this paper.

  • PDF

A Study on Implementation of Linear 25Watts High Power Amplifier for VDR (VDR을 위한 선형 25Watts 고출력 증폭기 구현에 관한 연구)

  • Choi, Jun-Su;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.389-391
    • /
    • 2011
  • This paper has been studied about design of linear 25Watt Power amplifier for VDR(VHF Data Radio). VDR's frequency band is 117.975~137MHz, and CSMA(Carrier Sense Multiple Access), D8PSK(Differential Eight Phase Shift Keyed), 25KHz's channel bandwidth use. It also stated in DO-281A MOPS output power, symbol constellation error, spurious emissions, adjacent channel power must be met. HPA is designed to meet DO-281A standard.

  • PDF

An ultra low-noise radio frequency amplifier based on a dc SQUID

  • Andre, Marc-Olivier;Kinion, Darin;Clarke, John;Muck, Michael
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.2-6
    • /
    • 2000
  • We have developed an extremely sensitive radio frequency amplifier based on the dc superconducting quantum interference device (dc SQUID). Unlike a conventional semiconductor amplifier, a SQUID can be cooled to ultra-low temperatures (100 mK or less) and thus potentially achieve a much lower noise temperature. In a conventional SQUID amplifier, where the integrated input coil is operated as a lumped element, parasitic capacitance between the coil and the SQUID washer limits the frequency up to which a substantial gain can be achieved to a few hundred MHz. This problem can be circumvented by operating the input coil of the SQUID as a microstrip resonator: instead of connecting the input signal open. Such amplifiers have gains of 15 dB or more at frequencies up to 3 GHz. If required, the resonant frequency of the microstrip can be tuned by means of a varactor diode connected across the otherwise open end of the resonator. The noise temperature of microstrip SQUID amplifiers was measured to be between $0.5\;K\;{\pm}\;0.3\;K$ at a frequency of 80 MHz and $1.5\;K\;{\pm}\;1.2\;K$ at 1.7 GHz, when the SQUID was cooled to 4.2 K. An even lower noise temperature can be achieved by cooling the SQUID to about 0.4 K. In this case, a noise temperature of $100\;mK\;{\pm}\;20\;mK$ was achieved at 90 MHz, and of about $120\;{\pm}\;100\;mK$ at 440 MHz.

  • PDF

An Ultra Low-noise Radio Frequency Amplifier Based on a DC SQUID

  • Muck, Michael;Ande, Marc-Olivier;Kinion, Darin;Clarke, John
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • We have developed an extremely sensitive radio frequency amplifier based on the dc superconducting quantum interference device (dc SQUID). Unlike a conventional semiconductor amplifier, a SQUID can be cooled to ultra-low temperatures (100 mK or less) and thus potentially achieve a much lower noise temperature. In a conventional SQUID amplifier, where the integrated input coil is operated as a lumped element, parasitic capacitance between the coil and the SQUID washer limits the frequency up to which a substantial gain can be achieved to a few hundred MHz. This problem can be circumvented. by operating the input coil of the SQUID as a microstrip resonator: instead of connecting the input signal between the two ends of the coil, it is connected between the SQUID washer and one end of the coil; the other end is left open. Such amplifiers have gains of 15 dB or more at frequencies up to 3 GHz. If required, the resonant frequency of the microstrip can be tuned by means of a varactor diode connected across the otherwise open end of the resonator. The noise temperature of microstrip SQUID amplifiers was measured to be between 0.5 K $\pm$ 0.3 K at a frequency of 80 MHz and 1.5 K $\pm$: 1.2 K at 1.7 GHz, when the SQUID was cooled to 4.2 K. An even lower noise temperature can be achieved by cooling the SQUID to about 0.4 K. In this case, a noise temperature of 100 mK $\pm$ 20 mK was achieved at 90 MHz, and of about 120 $\pm$ 100 mK at 440 MHz.

  • PDF

A Study on Linearization of Intermodulation Distortion for WCDMA

  • Jeon, Joong-Sung;Kim, Dong-il
    • Journal of Navigation and Port Research
    • /
    • v.28 no.2
    • /
    • pp.149-154
    • /
    • 2004
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping, because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance, a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth Experimental results are presented for IMT-2000 frequency band The center frequency of the feedforward amplifier is 2140MHz with 60MHz bandwidth When the average output power of feedforward amplifier is 20 Watt, the intermodulation cancellation performance is more than 28dB. In this case, the output power of feedforward amplifier reduced 3.5dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7% for multicarrier signals.

A High Efficiency Reconfigurable Doherty Amplifier (고효율의 재구성된 도허티 증폭기)

  • Kim, Ell-Kou;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.3
    • /
    • pp.220-226
    • /
    • 2008
  • This paper proposes the Reconfigurable Doherty Amplifier(RDA) with asymmetric structure which has ${\lambda}/4$ impedance transformer for modulating the load impedance in peaking amplifier path. This structure is possible to implement a compact size for N-stage multi Doherty amplifier and to get almost same characteristics that is compared to conventional Doherty amplifier. To realize the high efficiency amplifier, we were implemented 45 Watts power amplifier at transmitter band of Wideband Code Division Multiple Access(WCDMA) base-station. As a result, in case of WCDMA 1 Frequency Allocation(FA) input signals, this amplifier has obtained a 26.3% Power Added Efficiency(PAE) at 8 dB back-off point from P1dB and an Adjacent Channel Leakage Power(ACLR) is -40.4 dBc at center frequency ${\pm}5MHz$ deviation.

  • PDF

The Design and Implementation of a TV Tuner for the Digital Terrestrial Broadcasting

  • Chong, Young-Jun;Kim, Jae-Young;Lee, Il-Kyoo;Choi, Jae-Ick;Oh, Seung-Hyeub
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.2
    • /
    • pp.131-138
    • /
    • 2001
  • The DTV (Digital TV) tuner for an 8-VSB (Vestigial Side-Band) modulation was developed to meet the requirements of the ATSC (Advanced Television Systems Committee). The double frequency conversion and the active tracking filter in the front-end were used to cancel interferences between adjacent channels and multi-channels by suppressing the IF beat and the Image frequency. However, It was impossible to get frequency mapping between the tracking filter and the first VCO (Voltage Controlled Oscillator) in the existing DTV tuner structure which differs from the NTSC (National Television Systems Committee) tuner. This paper, therefore, suggests an assailable structure and a new method for the automatic frequency selection by mapping the frequency characteristics over the tracking voltage and the combined HW which is composed of a Micro-controller, an EEPROM (Electrically Erasable Programmable Read Only Memory), a DAC (Digital-to-Analog Converter), an OP amplifier, and a switch driver.

  • PDF