• Title/Summary/Keyword: r-ideal

Search Result 679, Processing Time 0.023 seconds

GRADED INTEGRAL DOMAINS IN WHICH EACH NONZERO HOMOGENEOUS IDEAL IS DIVISORIAL

  • Chang, Gyu Whan;Hamdi, Haleh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1041-1057
    • /
    • 2019
  • Let ${\Gamma}$ be a nonzero commutative cancellative monoid (written additively), $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}$ $R_{\alpha}$ be a ${\Gamma}$-graded integral domain with $R_{\alpha}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma}$, and $S(H)=\{f{\in}R{\mid}C(f)=R\}$. In this paper, we study homogeneously divisorial domains which are graded integral domains whose nonzero homogeneous ideals are divisorial. Among other things, we show that if R is integrally closed, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is an h-local $Pr{\ddot{u}}fer$ domain whose maximal ideals are invertible, if and only if R satisfies the following four conditions: (i) R is a graded-$Pr{\ddot{u}}fer$ domain, (ii) every homogeneous maximal ideal of R is invertible, (iii) each nonzero homogeneous prime ideal of R is contained in a unique homogeneous maximal ideal, and (iv) each homogeneous ideal of R has only finitely many minimal prime ideals. We also show that if R is a graded-Noetherian domain, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is a divisorial domain of (Krull) dimension one.

RINGS IN WHICH NILPOTENT ELEMENTS FORM AN IDEAL

  • Cho, June-Rae;Kim, Nam-Kyun;Lee, Yang
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • We study the relationships between strongly prime ideals and completely prime ideals, concentrating on the connections among various radicals(prime radical, upper nilradical and generalized nilradical). Given a ring R, consider the condition: (*) nilpotent elements of R form an ideal in R. We show that a ring R satisfies (*) if and only if every minimal strongly prime ideal of R is completely prime if and only if the upper nilradical coincides with the generalized nilradical in R.

  • PDF

SOME RESULTS OF MONOMIAL IDEALS ON REGULAR SEQUENCES

  • Naghipour, Reza;Vosughian, Somayeh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.711-720
    • /
    • 2021
  • Let R denote a commutative noetherian ring, and let 𝐱 := x1, …, xd be an R-regular sequence. Suppose that 𝖆 denotes a monomial ideal with respect to 𝐱. The first purpose of this article is to show that 𝖆 is irreducible if and only if 𝖆 is a generalized-parametric ideal. Next, it is shown that, for any integer n ≥ 1, (x1, …, xd)n = ⋂P(f), where the intersection (irredundant) is taken over all monomials f = xe11 ⋯ xedd such that deg(f) = n - 1 and P(f) := (xe1+11, ⋯, xed+1d). The second main result of this paper shows that if 𝖖 := (𝐱) is a prime ideal of R which is contained in the Jacobson radical of R and R is 𝖖-adically complete, then 𝖆 is a parameter ideal if and only if 𝖆 is a monomial irreducible ideal and Rad(𝖆) = 𝖖. In addition, if a is generated by monomials m1, …, mr, then Rad(𝖆), the radical of a, is also monomial and Rad(𝖆) = (ω1, …, ωr), where ωi = rad(mi) for all i = 1, …, r.

On the Definition of Intuitionistic Fuzzy h-ideals of Hemirings

  • Rahman, Saifur;Saikia, Helen Kumari
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.435-457
    • /
    • 2013
  • Using the Lukasiewicz 3-valued implication operator, the notion of an (${\alpha},{\beta}$)-intuitionistic fuzzy left (right) $h$-ideal of a hemiring is introduced, where ${\alpha},{\beta}{\in}\{{\in},q,{\in}{\wedge}q,{\in}{\vee}q\}$. We define intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) of a hemiring R and investigate their various properties. We characterize intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) and (${\alpha},{\beta}$)-intuitionistic fuzzy left (right) $h$-ideal of a hemiring R by its level sets. We establish that an intuitionistic fuzzy set A of a hemiring R is a (${\in},{\in}$) (or (${\in},{\in}{\vee}q$) or (${\in}{\wedge}q,{\in}$)-intuitionistic fuzzy left (right) $h$-ideal of R if and only if A is an intuitionistic fuzzy left (right) $h$-ideal with thresholds (0, 1) (or (0, 0.5) or (0.5, 1)) of R respectively. It is also shown that A is a (${\in},{\in}$) (or (${\in},{\in}{\vee}q$) or (${\in}{\wedge}q,{\in}$))-intuitionistic fuzzy left (right) $h$-ideal if and only if for any $p{\in}$ (0, 1] (or $p{\in}$ (0, 0.5] or $p{\in}$ (0.5, 1] ), $A_p$ is a fuzzy left (right) $h$-ideal. Finally, we prove that an intuitionistic fuzzy set A of a hemiring R is an intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) of R if and only if for any $p{\in}(s,t]$, the cut set $A_p$ is a fuzzy left (right) $h$-ideal of R.

ON ϕ-PSEUDO ALMOST VALUATION RINGS

  • Esmaeelnezhad, Afsaneh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.935-946
    • /
    • 2015
  • The purpose of this paper is to introduce a new class of rings that is closely related to the classes of pseudo valuation rings (PVRs) and pseudo-almost valuation domains (PAVDs). A commutative ring R is said to be ${\phi}$-ring if its nilradical Nil(R) is both prime and comparable with each principal ideal. The name is derived from the natural map ${\phi}$ from the total quotient ring T(R) to R localized at Nil(R). A prime ideal P of a ${\phi}$-ring R is said to be a ${\phi}$-pseudo-strongly prime ideal if, whenever $x,y{\in}R_{Nil(R)}$ and $(xy){\phi}(P){\subseteq}{\phi}(P)$, then there exists an integer $m{\geqslant}1$ such that either $x^m{\in}{\phi}(R)$ or $y^m{\phi}(P){\subseteq}{\phi}(P)$. If each prime ideal of R is a ${\phi}$-pseudo strongly prime ideal, then we say that R is a ${\phi}$-pseudo-almost valuation ring (${\phi}$-PAVR). Among the properties of ${\phi}$-PAVRs, we show that a quasilocal ${\phi}$-ring R with regular maximal ideal M is a ${\phi}$-PAVR if and only if V = (M : M) is a ${\phi}$-almost chained ring with maximal ideal $\sqrt{MV}$. We also investigate the overrings of a ${\phi}$-PAVR.

ON r-IDEALS IN INCLINE ALGEBRAS

  • Ahn, Sun-Shin;Kim, Hee-Sik
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.229-235
    • /
    • 2002
  • In this paper we show that if K is an incline with multiplicative identity and I is an r-ideal of k containing a unit u, then I = K. Moreover, we show that in a non-zero incline K with multiplicative identity and zero element, every proper r-ideal in K is contained in a maximal r-ideal of K.

Generalizations of V-rings

  • Song, Xianmei;Yin, Xiaobin
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.357-362
    • /
    • 2005
  • In this paper, we introduce a new notion which we call a generalized weakly ideal. We also investigate characterizations of strongly regular rings with the condition that every maximal left ideal is a generalized weakly ideal. It is proved that R is a strongly regular ring if and only if R is a left GP-V-ring whose every maximal left (right) ideal is a generalized weakly ideal. Furthermore, if R is a left SGPF ring, and every maximal left (right) ideal is a generalized weakly ideal, it is shown that R/J(R) is strongly regular. Several known results are improved and extended.

  • PDF

(m, n)-CLOSED δ-PRIMARY IDEALS IN AMALGAMATION

  • Mohammad Hamoda;Mohammed Issoual
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.575-583
    • /
    • 2024
  • Let R be a commutative ring with 1 ≠ 0. Let Id(R) be the set of all ideals of R and let δ : Id(R) → Id(R) be a function. Then δ is called an expansion function of the ideals of R if whenever L, I, J are ideals of R with J ⊆ I, then L ⊆ δ (L) and δ (J) ⊆ δ (I). Let δ be an expansion function of the ideals of R and m ≥ n > 0 be positive integers. Then a proper ideal I of R is called an (m, n)-closed δ-primary ideal (resp., weakly (m, n)-closed δ-primary ideal ) if am ∈ I for some a ∈ R implies an ∈ δ(I) (resp., if 0 ≠ am ∈ I for some a ∈ R implies an ∈ δ(I)). Let f : A → B be a ring homomorphism and let J be an ideal of B. This paper investigates the concept of (m, n)-closed δ-primary ideals in the amalgamation of A with B along J with respect to f denoted by A ⋈f J.

DEPTHS OF THE REES ALGEBRAS AND THE ASSOCIATED GRADED RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.210-214
    • /
    • 1994
  • The purpose of this paper is to investigate the relationship between the depths of the Rees algebra R[It] and the associated graded ring g $r_{I}$(R) of an ideal I in a local ring (R,m) of dim(R) > 0. The relationship between the Cohen-Macaulayness of these two rings has been studied extensively. Let (R, m) be a local ring and I an ideal of R. An ideal J contained in I is called a reduction of I if J $I^{n}$ = $I^{n+1}$ for some integer n.geq.0. A reduction J of I is called a minimal reduction of I. The reduction number of I with respect to J is defined by (Fig.) S. Goto and Y.Shimoda characterized the Cohen-Macaulay property of the Rees algebra of the maximal ideal of a Cohen-Macaulay local ring in terms of the Cohen-Macaulay property of the associated graded ring of the maximal ideal and the reduction number of that maximal ideal. Let us state their theorem.m.m.

  • PDF