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ON THE COHEN-MACAULAYNESS
OF THE ASSOCIATED GRADED
RING OF AN EQUIMULTIPLE IDEAL

MEeE-KyounGg KiMm

1. Introduction

Throughout this paper, all rings are assumed to be commutative
with identity. By a local ring (R, m), we mean a Noetherian ring R
which has a unique maximal ideal m. Let I be an ideal in a ring R
and ¢ an indeterminate over R. Then the Rees algebra R[It] and the
associated graded ring gr;(R) of I are defined to be

RItj]=Reot®I*’a ..
and
gri(R)=R/Ie I/ IP®I*/I*® ...

With these notations, we have a natural isomorphism

R[It]

IR[It]
U. Grothe, M. Herrmann and U. Orbanz in |2, Proposition 2.9] proved
that the number of homogeneous elements among a system of parame-
ters of R[[t] is bounded above by dim(R) — I(I) + 2. In this paper, we
shall show that the number of homogeneous parameters for gry(R) is
bounded above by 2dim(R) — (1) — dim(R/I). And we shall extend to

equimultiple ideals results of J. Sally [7, Theorem 2], Valabrega-Valla
(10, Proposition 3.1].

>~ gr;(R).
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2. Preliminaries

In this section we state several definitions and notations which are
needed in our subsequent considerations. Let R be a Noetherian ring
and I an ideal of R. Given an element a € R, we define

n if a€l™\I"M,

vi(a) = {

00 if a€Np>I™

When v(a) = n # oo, the residue class of a in I /I™*! is called the
leading form of a and denoted by a* with deg;(a) = v/(a). Ifvi(a) = oo,
then we set a* = 0.

LEMMA 2.1 ( [10, COROLLARY 2.7] ). If] and J = (b1,--- ,by) are
ideals of a local ring (R, m), then b},--- b} form a gr;(R)-sequence if
and only if by,--- by form an R-sequence and moreover for all i,1 <
1 <k,and for alln > 1,

(b, by NIt =" rvialp
j=1

DEFINITION 2.2.  Let (R, m) be a local ring ard I an ideal of R.
An ideal J contained in I is called a reduction of I if JI™ = I™**1 for
some integer n > 0. A reduction J of I is called a minimal reduction
of I if J is minimal with respect to being a reduction of I. The reduc-
tion number of I is defined by r(I) = {n > 0| there exists a minimal
reduction J of I such that JI™ = ["*T1},

DEFINITION 2.3. Let (R, m) be a local ring and [ be an ideal of R.
Define I(1) to be the Krull dimension of the graded ring

R[It)/mR[It) = R/m& I/ml & I*/mI* @ -

I(I) is called the analytic spread of I. The ideal I is said to be equi-
multiple if ht(1) = I(I).

The following result is known (c.f. Lemma 4.4 in [6] and Corollary
in [1]). We will give an alternative proof.

36



On the Cohen-Macaulayness

PROPOSITION 2.4. Let (R,m) be a local ring and I be an ideal of
R. Then ht(I) < [(I) < dim(R).

Proof. By the definition of I(I), we know that {(I}) = dim(gr;(R)
/mgri(R)). Since dim(gr;(R)) = dim(R) (by Theorem 15.7 in [5]),
we get that I(/) < dim(R). To see the first inequalty, by Theorem
15.1 in [5], we have that dim(gr;(R)) — dim(R/I) < I(I), and hence
ht(I) < dim(R) — dim(R/I) < {(I).

REMARKS 2.5. Let (R, m) be a local ring.
(a) Since ht(I) < l(I) < dim(R), any m-primary ideal is equimulti-
ple.
(b) If R/m is an infinite field, then {(I) is the least number of elements
generating a reduction of I ([6, Corollary of Theorem 2, pp 151}).

3. The Number of Homogeneous Parameters for gr;(R)

DEFINITION 3.1. Let A be a d-dimensional Noetherian ring. A
set {ai,---,aq} C A will be called a system of parameters for A if
(a1, - ,aq4)A is an intersection of maximal ideals m; of A such that
dim(An,,) = d. If in addition A is graded and a;,--- ,aq are homoge-
neous, then {ai, --,aq} will be called a homogeneous system of pa-
rameters.

LEMMA 3.2. Let A be a Noetherian ring of finite Krull dimension.

Then if ay,--- ,as € A is part of a system of parameters of A we have

dim(A/(a1,--- ,as)A) = dim(A) - s.

Proof. See Theorem 13.6 in [5]. [ |

PROPOSITION 3.3. Let (R, m) be a local ring and I be a proper ideal
of R such that ht(I) > 0. Let N be the unique homogeneous maximal
ideal of gr;(R), and hy,--- ,h, € N be part of a system of param-
eters of gr;(R). Then the number of homogeneous elements among
{h1,--- , ho} is at most 2dim(R) — (1) — dim(R/I).
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Proof. Let G = gr;(R) and Gy = @®p>11"/I""!. Without loss of

generality we may assume that Ay, - - - , h, are homogeneous elements of
degree 0, hy41,- -, huto are homogeneous elements of positive degree,
and hy4y+1,- -, hy are non-homogeneous elements, where 0 < u,v < r.

Then by Lemma 3.2, we see that
I(I) =dim(G/mG) < dim(G) —u

and

dim(R/1I) = dim(G/G4) < dim(G) - v.

This gives that [(I) +dim(R/I) < 2dim(G) — (u + v). Since dim(G) =
dim(R) ([5, Thedrem 15.7]) we see that v + v < 2dim(R) — I(I) —
dim(R/I). [ |

COROLLARY 3.4. Lrt (R, m) be a local ring and let I be an ideal of
R such that ht(I) > 0. Then the following conditions are equivalent.

(a) g¢ri(R) has a homogeneous system of parameters.
(b) dim(R)=dim(R/I)+ l(I).

Proof. (a) = (b). By Proposition 3.3 we see that dim(gr;(R)) <
2dim(R) — I(I) — dim(R/I). Since dim(gr;(R)) = dim(R) ([5, Theo-
rem 15.7]) we have that dim(R/I)+1(I) < dim(R). To see the other in-
equalty, by Theorem 15.1 in [5], we know that dim(gr;(R))—dim(R/I) <
I(I), and hence dim(R) < dim(R/I) + I(I), which gives the assertion.
(b) = (a). The following is a proof in [2, Proposition 2.6]. Let

= dim(R) and s = [(I). Let by,---,b; be a system of parameters
mod/. Then

gri(R)

dim
((b){a o 7b:)gT](R)

) =),

and gr;(R)/(b7, - ,bf)gri(R) has a homogeneous system of parame-
ters ay,--- ,a, ([9, (0.36)]). Let al,---,a* in gr;(RR) be any homoge-
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neous inverse images of all, - ,a; respectively. Then
RYy/(by,--- b} R
0 = dim( 2L/ B W)ar (R),
(ay,---,ay)
gri(R)

= dim
((va"' )b;’aia"' 7a:)51T1(R))

< dim(gr;(R)) — (t + s)
=dim(R) — (t + s)
= (.

So we have that {b],---,b},a},---,a’} is a homogeneous system of
parameters of gr;(R). [ |

REMARKS 3.5. (1) ( [2, Corollary 2.7] ) The proof of (b) =>(a)
above shows that, if ay,---,as generate a minimal reduction of I,
where s = [(]), and by, -, b, is a system of parameters modI, and
t + s = dim(R), then {b, - ,b},a},--- ,a} is a homogeneous system
of parameters for gr;(R), where b, --- | b} are elements of degree 0, and
aj, - ,as are elements of degree 1.

(2) If(R,m)is alocal ring of dim(R) = d and I is an m-primary ideal,
then gr;(R) has a homogeneous system of parameters, i.e., af, - ,a}
is a homogeneous system of parameters for gr;(R), where a, - ,aq
generate a minimal reduction of .

(3) (19, (0.36)] ) If A =P,>04,, is a non-negatively graded ring and
Ag is an Artinian local ring, then the graded rimg A has a homogeneous
system of parameters.

4. A Generalization of the Valabrega and Valla’s Result

As an application of the Valabrega and Valla’s result in [10], we
know that if (R, m) is a d-dimensional Cohen-Macaulay local ring and
I is an m-primary ideal satisfying 72 = (a1, -- , aq)I for some minimal
reduction (ay,---,aq) of I, then a},--- ,a} in I/I? form a gr;(R)-
sequence and hence gry(R) is Cohen-Macaulay. As an extension of this

result, we show in Theorem 4.1 the analogous result for an equimultiple
ideal.
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THEOREM 4.1. Let (R,m) be a Cohen-Macaulay local ring and I
be an equimultiple ideal satisfying I? = (a1, -- ,as)I for some minimal
reduction ay,- - ,a, of I, where s = [(I). Assume that R/I is Cohen-
Macaulay. Then gr;(R) is Cohen-Macaulay.

Proof. By Remarks 3.5.(1), we know that {b},--- ,b},a}, - a’} is
a homogeneous system of parameters for gr;(R), where by, -- ,b, is a
system of parameters modl. Since R is Cohen-Macaulay, we have that
dim(R) = dim(R/I) + ht(I), and hence t + s = aim(R) = gr(R) (

[5, Theorem 15.7] ). It suffices to show that b},- - ,bf,af,--- ,a* is
a gry(R)-sequence by [3]. To see this we have to consider equivalent
conditions of Lemma 2.1. First, by,--- ,b;,a;1,-- ,as is a system of

parameters for R, and hence it is an R-sequence since (R, m) is Cohen-
Macaulay local ring. Secondly, we have to show that for all n > 0,

(b17“' 7btaa’17"' 7a8)m1n = (bla"' )bt)In+(alv"' ’aS)In_l'

For n > 1, we have that (by, -+ ,b;,a1, -+ ,a,) NI" = I" since I™ C
(ala”' )as)v and (bl)"' 5bt)-[n + (al,"' aaS)In_l - (bly"' 7bt)In +
I™ = TI" since I = (a1, ,a,)1.

For n = 1, we have that

(bly"' >btaa1)"' 70'8)0]:(({)11"' ,bt)ﬂ])"f‘((al,"‘ 70'3)0[)
:(b17"' abt)I+(a17' . 7as)

since R/I is Cohen-Macaulay. This finishes the proof. B

The next example shows that Theorem 4.1 is false without some
restriction on R/I.

EXAMPLE 4.2. Let R = [[X,Y, Z]] and I = (X2, XY Z,Y?)R, where
k is an infinite field and X,Y,Z are indeterminates. Then [ is an
equimultiple ideal since (X?,Y2) C I = (X,Y)? and I?> = (X2, Y?)I.
But R/I is not Cohen-Macaulay since (I :gp XY) = (X,Y, Z)R. Hence
R|[It] is not Cohen-Macaulay by Theorem 3.1 in [4]. Therefore gr;(R)
is not Cohen-Macaulay by Theorem 4.8 in [2].
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CoROLLARY 4.3 ( [10, ProPosITION 3.1] ). Let (R, m) be a d-
dimensional Cohen-Macaulay local ring and I an m-primary ideal sat-
isfying I? = (a3, ,aq4)! for some minimal reduction ay,--- ,aq of I.
Then gr;(R) is Cohen- Macaulay.

The next example shows that Corollary 4.3 cdoes not extend to the
case where I has reduction number 2.

EXAMPLE 4.4. Let R = [[t3,1*,%%]] and I = (t3,t*)R, where k is an
infinite field and ¢ is an indeterminate. Then [ is an m-primary ideal
since m? C I, where m = (t3,t4,#°)R, and r(I) = 2 since I3 = (t3)I°.
However, t5 ¢ I, but if (t°)* is the image of t> in /I then (t3)*(I/1?) =
0 since t>I C I?, and hence depth(G.) = 0, where G = gr;(R). Hence
gri(R) is not Cohen-Macaulay.

COROLLARY 4.5( [7, THEOREM 2] ). (R,m) be a d-dimensional
Cohen-Macaulay local ring. Assume that there exist elementsxy,- - , 4
in m such that m? = (z1, -+ ,zq)m. Then gr,,(R) is Cohen-Macaulay.

REMARK 4.6( [8, THEOREM 2.1} ). J. Sally showed that for any

Cohen-Macaulay local ring (R, m), grm, (R) is Cohen-Macaulay if r(m) <
2.
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