ON THE COHEN-MACAULAYNESS OF THE ASSOCIATED GRADED RING OF AN EQUIMULTIPLE IDEAL

MEE-KYOUNG KIM

1. Introduction

Throughout this paper, all rings are assumed to be commutative with identity. By a local ring (R, m), we mean a Noetherian ring R which has a unique maximal ideal m. Let I be an ideal in a ring R and t an indeterminate over R. Then the Rees algebra R[It] and the associated graded ring $gr_I(R)$ of I are defined to be

$$R[It] = R \oplus It \oplus I^2t^2 \oplus \cdots$$

and

$$gr_I(R) = R/I \oplus I/I^2 \oplus I^2/I^3 \oplus \cdots$$

With these notations, we have a natural isomorphism

$$rac{R[It]}{IR[It]}\cong gr_I(R).$$

U. Grothe, M. Herrmann and U. Orbanz in [2, Proposition 2.9] proved that the number of homogeneous elements among a system of parameters of R[It] is bounded above by dim(R) - l(I) + 2. In this paper, we shall show that the number of homogeneous parameters for $gr_I(R)$ is bounded above by 2dim(R) - l(I) - dim(R/I). And we shall extend to equimultiple ideals results of J. Sally [7, Theorem 2], Valabrega-Valla [10, Proposition 3.1].

Received April 20, 1996.

¹⁹⁹¹ AMS Subject Classification: 13A30, 13H10.

Key words and phrases: Cohen-Macaulay, equimultiple ideal, minimal reduction. This paper was supported by Faculty Research Fund, Sung Kyun Kwan University, 1995.

2. Preliminaries

In this section we state several definitions and notations which are needed in our subsequent considerations. Let R be a Noetherian ring and I an ideal of R. Given an element $a \in R$, we define

$$v_I(a) = \{ egin{array}{ll} n & if & a \in I^n \backslash I^{n+1}, \\ \infty & if & a \in \cap_{n \geq 1} I^n. \end{array} \}$$

When $v_I(a) = n \neq \infty$, the residue class of a in I^n/I^{n+1} is called the leading form of a and denoted by a^* with $deg_I(a) = v_I(a)$. If $v_I(a) = \infty$, then we set $a^* = 0$.

LEMMA 2.1 ([10, COROLLARY 2.7]). If I and $J = (b_1, \dots, b_k)$ are ideals of a local ring (R, m), then b_1^*, \dots, b_k^* form a $gr_I(R)$ -sequence if and only if b_1, \dots, b_k form an R-sequence and moreover for all $i, 1 \le i \le k$, and for all $n \ge 1$,

$$(b_1,\cdots,b_i)\cap I^n=\sum_{j=1}^i I^{n-v_I(b_j)}b_j.$$

DEFINITION 2.2. Let (R, m) be a local ring and I an ideal of R. An ideal J contained in I is called a reduction of I if $JI^n = I^{n+1}$ for some integer $n \geq 0$. A reduction J of I is called a minimal reduction of I if J is minimal with respect to being a reduction of I. The reduction number of I is defined by $r(I) = \{n \geq 0 | \text{ there exists a minimal reduction } J \text{ of } I \text{ such that } JI^n = I^{n+1}\}.$

DEFINITION 2.3. Let (R, m) be a local ring and I be an ideal of R. Define l(I) to be the Krull dimension of the graded ring

$$R[It]/mR[It] = R/m \oplus I/mI \oplus I^2/mI^3 \oplus \cdots$$

l(I) is called the analytic spread of I. The ideal I is said to be equimultiple if ht(I) = l(I).

The following result is known (c.f. Lemma 4.4 in [6] and Corollary in [1]). We will give an alternative proof.

PROPOSITION 2.4. Let (R, m) be a local ring and I be an ideal of R. Then $ht(I) \leq l(I) \leq dim(R)$.

Proof. By the definition of l(I), we know that $l(I) = dim(gr_I(R) / mgr_I(R))$. Since $dim(gr_I(R)) = dim(R)$ (by Theorem 15.7 in [5]), we get that $l(I) \leq dim(R)$. To see the first inequalty, by Theorem 15.1 in [5], we have that $dim(gr_I(R)) - dim(R/I) \leq l(I)$, and hence $ht(I) \leq dim(R) - dim(R/I) \leq l(I)$.

Remarks 2.5. Let (R, m) be a local ring.

- (a) Since $ht(I) \leq l(I) \leq dim(R)$, any m-primary ideal is equimultiple.
- (b) If R/m is an infinite field, then l(I) is the least number of elements generating a reduction of I ([6, Corollary of Theorem 2, pp 151]).

3. The Number of Homogeneous Parameters for $gr_I(R)$

DEFINITION 3.1. Let A be a d-dimensional Noetherian ring. A set $\{a_1, \dots, a_d\} \subset A$ will be called a system of parameters for A if $\sqrt{(a_1, \dots, a_d)A}$ is an intersection of maximal ideals m_i of A such that $dim(A_{m_i}) = d$. If in addition A is graded and a_1, \dots, a_d are homogeneous, then $\{a_1, \dots, a_d\}$ will be called a homogeneous system of parameters.

LEMMA 3.2. Let A be a Noetherian ring of finite Krull dimension. Then if $a_1, \dots, a_s \in A$ is part of a system of parameters of A we have

$$dim(A/(a_1, \cdots, a_s)A) = dim(A) - s.$$

Proof. See Theorem 13.6 in [5].

PROPOSITION 3.3. Let (R, m) be a local ring and I be a proper ideal of R such that ht(I) > 0. Let N be the unique homogeneous maximal ideal of $gr_I(R)$, and $h_1, \dots, h_r \in N$ be part of a system of parameters of $gr_I(R)$. Then the number of homogeneous elements among $\{h_1, \dots, h_r\}$ is at most 2dim(R) - l(I) - dim(R/I).

Proof. Let $G = gr_I(R)$ and $G_+ = \bigoplus_{n \geq 1} I^n/I^{n+1}$. Without loss of generality we may assume that h_1, \dots, h_u are homogeneous elements of degree $0, h_{u+1}, \dots, h_{u+v}$ are homogeneous elements of positive degree, and h_{u+v+1}, \dots, h_r are non-homogeneous elements, where $0 \leq u, v \leq r$. Then by Lemma 3.2, we see that

$$l(I) = dim(G/mG) \le dim(G) - u$$

and

$$dim(R/I) = dim(G/G_+) \le dim(G) - v.$$

This gives that $l(I) + dim(R/I) \le 2dim(G) - (u+v)$. Since dim(G) = dim(R) ([5, Thedrem 15.7]) we see that $u+v \le 2dim(R) - l(I) - dim(R/I)$.

COROLLARY 3.4. Let (R, m) be a local ring and let I be an ideal of R such that ht(I) > 0. Then the following conditions are equivalent.

- (a) $gr_I(R)$ has a homogeneous system of parameters.
- (b) dim(R) = dim(R/I) + l(I).

Proof. (a) \Rightarrow (b). By Proposition 3.3 we see that $dim(gr_I(R)) \leq 2dim(R) - l(I) - dim(R/I)$. Since $dim(gr_I(R)) = dim(R)$ ([5, Theorem 15.7]) we have that $dim(R/I) + l(I) \leq dim(R)$. To see the other inequalty, by Theorem 15.1 in [5], we know that $dim(gr_I(R)) - dim(R/I) \leq l(I)$, and hence $dim(R) \leq dim(R/I) + l(I)$, which gives the assertion. (b) \Rightarrow (a). The following is a proof in [2, Proposition 2.6]. Let t = dim(R) and s = l(I). Let b_1, \dots, b_t be a system of parameters mod I. Then

$$dim(\frac{gr_I(R)}{(b_1^*,\cdots,b_t^*)gr_I(R)}) = l(I),$$

and $gr_I(R)/(b_1^*, \dots, b_t^*)gr_I(R)$ has a homogeneous system of parameters a_1', \dots, a_s' ([9, (0.36)]). Let a_1^*, \dots, a_s^* in $gr_I(R)$ be any homogeneous

neous inverse images of $a_{1}^{'}, \cdots, a_{s}^{'}$ respectively. Then

$$0 = dim(\frac{gr_I(R)/(b_1^*, \dots, b_t^*)gr_I(R)}{(a_1', \dots, a_s')})$$

$$= dim(\frac{gr_I(R)}{(b_1^*, \dots, b_t^*, a_1^*, \dots, a_s^*)gr_I(R)})$$

$$\leq dim(gr_I(R)) - (t+s)$$

$$= dim(R) - (t+s)$$

$$= 0.$$

So we have that $\{b_1^*, \dots, b_t^*, a_1^*, \dots, a_s^*\}$ is a homogeneous system of parameters of $gr_I(R)$.

REMARKS 3.5. (1) ([2, Corollary 2.7]) The proof of (b) \Rightarrow (a) above shows that, if a_1, \dots, a_s generate a minimal reduction of I, where s = l(I), and b_1, \dots, b_t is a system of parameters modI, and t+s=dim(R), then $\{b_1^*, \dots, b_t^*, a_1^*, \dots, a_s^*\}$ is a homogeneous system of parameters for $gr_I(R)$, where b_1^*, \dots, b_t^* are elements of degree 0, and a_1^*, \dots, a_s^* are elements of degree 1.

- (2) If (R, m) is a local ring of dim(R) = d and I is an m-primary ideal, then $gr_I(R)$ has a homogeneous system of parameters, i.e., a_1^*, \dots, a_d^* is a homogeneous system of parameters for $gr_I(R)$, where a_1, \dots, a_d generate a minimal reduction of I.
- (3) ([9, (0.36)]) If $A = \bigoplus_{n \geq 0} A_n$ is a non-negatively graded ring and A_0 is an Artinian local ring, then the graded ring A has a homogeneous system of parameters.

4. A Generalization of the Valabrega and Valla's Result

As an application of the Valabrega and Valla's result in [10], we know that if (R, m) is a d-dimensional Cohen-Macaulay local ring and I is an m-primary ideal satisfying $I^2 = (a_1, \dots, a_d)I$ for some minimal reduction (a_1, \dots, a_d) of I, then a_1^*, \dots, a_d^* in I/I^2 form a $gr_I(R)$ -sequence and hence $gr_I(R)$ is Cohen-Macaulay. As an extension of this result, we show in Theorem 4.1 the analogous result for an equimultiple ideal.

THEOREM 4.1. Let (R, m) be a Cohen-Macaulay local ring and I be an equimultiple ideal satisfying $I^2 = (a_1, \dots, a_s)I$ for some minimal reduction a_1, \dots, a_s of I, where s = l(I). Assume that R/I is Cohen-Macaulay. Then $gr_I(R)$ is Cohen-Macaulay.

Proof. By Remarks 3.5.(1), we know that $\{b_1^*, \dots, b_t^*, a_1^*, \dots, a_s^*\}$ is a homogeneous system of parameters for $gr_I(R)$, where b_1, \dots, b_t is a system of parameters modI. Since R is Cohen-Macaulay, we have that dim(R) = dim(R/I) + ht(I), and hence $t + s = dim(R) = gr_I(R)$ ([5, Theorem 15.7]). It suffices to show that $b_1^*, \dots, b_t^*, a_1^*, \dots, a_s^*$ is a $gr_I(R)$ -sequence by [3]. To see this we have to consider equivalent conditions of Lemma 2.1. First, $b_1, \dots, b_t, a_1, \dots, a_s$ is a system of parameters for R, and hence it is an R-sequence since (R, m) is Cohen-Macaulay local ring. Secondly, we have to show that for all n > 0,

$$(b_1, \dots, b_t, a_1, \dots, a_s) \cap I^n = (b_1, \dots, b_t)I^n + (a_1, \dots, a_s)I^{n-1}.$$

For n>1, we have that $(b_1,\cdots,b_t,a_1,\cdots,a_s)\cap I^n=I^n$ since $I^n\subseteq (a_1,\cdots,a_s)$, and $(b_1,\cdots,b_t)I^n+(a_1,\cdots,a_s)I^{n-1}=(b_1,\cdots,b_t)I^n+I^n=I^n$ since $I^2=(a_1,\cdots,a_s)I$. For n=1, we have that

$$(b_1, \dots, b_t, a_1, \dots, a_s) \cap I = ((b_1, \dots, b_t) \cap I) + ((a_1, \dots, a_s) \cap I)$$

= $(b_1, \dots, b_t)I + (a_1, \dots, a_s)$

since R/I is Cohen-Macaulay. This finishes the proof.

The next example shows that Theorem 4.1 is false without some restriction on R/I.

EXAMPLE 4.2. Let R = [[X,Y,Z]] and $I = (X^2,XYZ,Y^2)R$, where k is an infinite field and X,Y,Z are indeterminates. Then I is an equimultiple ideal since $(X^2,Y^2) \subseteq I = (X,Y)^2$ and $I^2 = (X^2,Y^2)I$. But R/I is not Cohen-Macaulay since $(I:_RXY) = (X,Y,Z)R$. Hence R[It] is not Cohen-Macaulay by Theorem 3.1 in [4]. Therefore $gr_I(R)$ is not Cohen-Macaulay by Theorem 4.8 in [2].

On the Cohen-Macaulayness

COROLLARY 4.3 ([10, PROPOSITION 3.1]). Let (R, m) be a d-dimensional Cohen-Macaulay local ring and I an m-primary ideal satisfying $I^2 = (a_1, \dots, a_d)I$ for some minimal reduction a_1, \dots, a_d of I. Then $gr_I(R)$ is Cohen-Macaulay.

The next example shows that Corollary 4.3 does not extend to the case where I has reduction number 2.

EXAMPLE 4.4. Let $R = [[t^3, t^4, t^5]]$ and $I = (t^3, t^4)R$, where k is an infinite field and t is an indeterminate. Then I is an m-primary ideal since $m^2 \subseteq I$, where $m = (t^3, t^4, t^5)R$, and r(I) = 2 since $I^3 = (t^3)I^2$. However, $t^5 \notin I$, but if $(t^5)^*$ is the image of t^5 in R/I then $(t^5)^*(I/I^2) = 0$ since $t^5I \subseteq I^2$, and hence $depth(G_+) = 0$, where $G = gr_I(R)$. Hence $gr_I(R)$ is not Cohen-Macaulay.

COROLLARY 4.5([7, THEOREM 2]). (R, m) be a d-dimensional Cohen-Macaulay local ring. Assume that there exist elements x_1, \dots, x_d in m such that $m^2 = (x_1, \dots, x_d)m$. Then $gr_m(R)$ is Cohen-Macaulay.

REMARK 4.6 [8, THEOREM 2.1]). J. Sally showed that for any Cohen-Macaulay local ring (R,m), $gr_m(R)$ is Cohen-Macaulay if $r(m) \leq 2$.

References

- L. Burch, Codimension and Analytic Spread, Proc. Cambridge Phill. Soc. 72 (1972), 369-373.
- U. Grothe, M. Herrmann and U. Orbanz, Graded Cohen-Macaulay rings associated to equimultiple ideals, Math. Z. 68 (1986), 531-556.
- M. Hochster and L. J. Ratliff, Five theorems on Macaulay rings, Pac. J. of Math. 44 (1973), 147-172.
- 4. M.-K. Kim, On the Cohen-Macaulay Property of Quotient Rings, J. Nat. Sci. Sung Kyun Kwan Univ. **45** (2) (1994), 55-62.
- H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Math. 8, Cambridge Univ. Press, 1986.

Mee-Kyoung Kim

- D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Phil. Soc. 50 (1954), 145–158.
- J. D. Sally, On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ. 17 (1977), 19-21.
- 8. ———, Tangent Cones at Gorenstein Singularities, Comp. Math. 40 (1980), 167–175.
- 9. K. Shah, Coefficients ideals of the Hilbert polynomial and integral closures of parameter ideals, Ph. D. Thesis, Purdue Univ. (1988).
- P. Valabrega and G. Valla, Form rings and regular sequence, Nagoya Math. 72 (1978), 93–101.

DEPARTMENT OF MATHEMATICS, SUNG KYUN KWAN UNIVERSITY, SUWAN 440-746, KOREA