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Abstract. In this paper, we introduce a new notion which we call a generalized weakly

ideal. We also investigate characterizations of strongly regular rings with the condition

that every maximal left ideal is a generalized weakly ideal. It is proved that R is a strongly

regular ring if and only if R is a left GP-V-ring whose every maximal left (right) ideal

is a generalized weakly ideal. Furthermore, if R is a left SGPF ring, and every maximal

left (right) ideal is a generalized weakly ideal, it is shown that R/J(R) is strongly regular.

Several known results are improved and extended.

1. Introduction

Throughout this paper, R is an associative ring with identity and all modules
are unitary. For a nonempty subset X of R, the left (right) annihilator of X in R
will be denoted by l(X) (r(X)). If X = {a}, we always abbreviate it to l(a) (r(a)).
J(R) denotes the Jacobson radical of R, and the ideal means a two-sided ideal of R.
R is called strongly regular if, for any a in R, there exists b in R such that a = ba2.
This notion was introduced by Arens and Kaplansky ([1]). Since then, strongly
regular rings have drawn the attention of many authors ([1], [4]-[6]). Recall that

(1) R is called reduced if it contains no non-zero nilpotent element.

(2) A left R-module M is called YJ-injective if, for any 0 6= a ∈ R, there exists
a positive integer n with an 6= 0 such that any left R-homomorphism from
Ran to M extends to one from R to M ([9]).
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(3) A left R-module M is called GP-injective if, for any a ∈ R, there exists
a positive integer n such that any left R-homomorphism from Ran to M
extends to one from R to M ([7]).

(4) R is called a left GP-V-ring if every simple left R-module is YJ-injective [13].
Note that GP-injectivity differs from YJ-injectivity in this paper.

Now, we introduce a new notion.

Definition 1.1. Let R be a ring, and L a left ideal of R. L is said to be a generalized
weakly ideal (briefly GW-ideal) if, for any a in L, there exists a positive integer n
such that anR ⊆ L. Similarly, the notion of GW-ideal for a right ideal K of R can
be defined.

The following examples show that a GW-ideal of a ring need not to be an ideal
and a left (or right) ideal of a ring need not to be a GW-ideal.

Example 1.2. Let R =








a b c
0 a d
0 0 0




∣∣∣∣∣ a, b, c, d ∈ Z2



. Then α =




0 1 0
0 0 0
0 0 0


 in

R and Rα is a left nilpotent ideal of R. This yields that Rα is a GW-ideal, but it
is not an ideal of R.

Example 1.3. Let R =
{(

a b
0 c

) ∣∣∣ a, b, c ∈ Z2

}
. It is clear that K =

{(
0 0
0 a

) ∣∣∣ a ∈ Z2

}
is a right ideal of R and L =

{(
a 0
0 0

) ∣∣∣ a ∈ Z2

}
is a left

ideal of R, but neither K nor L is a GW-ideal of R.

In this paper, we first prove that R is a strongly regular ring if and only if R is
a left GP-V-ring whose every maximal left (right) ideal is a GW-ideal. This result
extends Theorem 1 in [10] and Theorem 10 in [11]. Then we show that if R is a
left SGPF ring whose every maximal left (right) ideal is a GW-ideal, then R/J(R)
is strongly regular. Therefore Theorem 2.3 of [8] is improved and extended.

2. Main results

We start with the following well known lemma ([10]).

Lemma 2.1. Let R be a GP-V-ring, then J(R) = 0.

Theorem 2.2. The following are equivalent for a ring R :

(1) R is strongly regular.

(2) R is a left GP-V-ring whose every maximal left ideal of R is a GW-ideal.

(3) R is a left GP-V-ring whose every maximal right ideal of R is a GW-ideal.
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Proof. (1) ⇒ (2) and (1) ⇒ (3) are trivial.
(2) ⇒ (1). First we show that R is reduced. If it is not the case, then there

exists 0 6= a ∈ R such that a2 = 0. Hence l(a) is contained in a maximal left
ideal M of R. Since R is a left GP-V-ring, we may define an R-homomorphism
f : Ra → R/M given by f(ra) = r + M satisfying 1 + M = f(a) = ab + M for
some b ∈ R. It is clear that 1− ab ∈ M . By the hypothesis, M is a GW-ideal and
ba ∈ M , so there exists a positive integer n such that (ba)nb ∈ M . Since M is a left
ideal of R, b− bab ∈ M implies that

(ba)n−1b = (ba)n−1(b− bab) + (ba)nb ∈ M

Continuing in this process, we have bab ∈ M . Thus b = (b − bab) + bab ∈ M and
ab ∈ M . Therefore 1 ∈ M , which contradicts M 6= R. This proves that R is
reduced.

Now we prove that R is strongly regular. Indeed, if l(a) + Ra 6= R for some
0 6= a ∈ R, then it must be contained in a maximal left ideal M of R. Thus R/M
is YJ-injective, hence there exists a positive integer n such that an 6= 0 and any
left R-homomorphism from Ran to R/M extends to an R-homomorphism from R
to R/M . Now we define a map f : Ran → R/M by f(ran) = r + M for any r in
R . Since R is reduced, l(an) = l(a). It yields f is well defined. Thus there exists
b ∈ R such that 1 − anb ∈ M and hence b − banb ∈ M , ban ∈ M . By hypothesis,
M is a GW-ideal. As the proof in the first part, we have banb ∈ M . Furthermore,
b = (b− banb) + banb ∈ M , and anb ∈ M , whence 1 ∈ M . This contradiction shows
that

l(a) + Ra = R

for any 0 6= a ∈ R. Therefore R is a strongly regular ring.
(3) ⇒ (1). By Lemma 2.1, we have J(R) = 0. Suppose R is not reduced, then

there exists 0 6= a ∈ R such that a2 = 0. Since a /∈ J(R), it follows that a /∈ K for
some maximal right ideal K of R, and K + aR = R. Moreover, a = ak for some k
in K since a2 = 0. By hypothesis, K is a GW-ideal. Then there exists a positive
integer n such that akn ∈ K. It follows that

a = ak = (ak)k = ak2 = · · · = akn ∈ K

which is a contradiction. Therefore R is reduced, and hence l(b) = r(b) is an ideal
for any b ∈ R. If l(a) + aR 6= R for some a ∈ R, then it must be contained in a
maximal right ideal K of R. Since K is a GW-ideal, Ran ⊆ K for some positive
integer n. Moreover,

l(a) + RanR ⊆ K ( R

Then there exists a maximal left ideal M such that l(a) + RanR ⊆ M ( R. Since
R/M is YJ-injective, there is a positive integer m such that (an)m 6= 0 and any left
R-homomorphism R(an)m → R/M extends to an R-homomorphism R → R/M .
Define g : R(an)m → R/M by g(r(an)m) = r + M . Since R is reduced, l((an)m) =
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l(a). It is clear that g is well defined and 1 + M = (an)mb + M for some b ∈ R.
But (an)mb ∈ RanR ⊆ M , then 1 ∈ M , a contradiction. Therefore

l(a) + aR = R

for any 0 6= a ∈ R. It follows that a = ada for some d ∈ R. Thus R is a von
Neumann regular ring. Hence R is strongly regular. ¤

Corollary 2.3 ([10]). The following conditions are equivalent.

(1) R is strongly regular.

(2) R is a left quasi-duo ring whose simple right modules are YJ-injective.

(3) R is a left quasi-duo ring whose simple left modules are YJ-injective.

Recall that R is a left SPF ring [8] if every simple left R-module is either
P-injective or flat; R is a left SGPF ring [12] if every simple left R-module is GP-
injective or flat. It is well known that R/J(R) plays an important role in ring theory
([3], [7]). Now, we study the strongly regularity of R/J(R) for a left SGPF ring R.

The next lemma is easy, so we omit the proof.

Lemma 2.4. Let L be a left (right) ideal of R which contains an ideal I. If L is a
GW-ideal , then L/I is a GW-ideal of R/I.

Lemma 2.5. Let R be a semiprimitive ring. If any maximal left (right) ideal of R
is a GW-ideal, then R is reduced.

Proof. Suppose there is 0 6= a ∈ R such that a2 = 0. Since R is semiprimitive, a /∈
J(R), there exists a maximal left ideal M such that a /∈ M . It yields M + Ra = R,
whence Ma = Ra, and a = ba for some b ∈ M . By hypothesis, M is a GW-ideal.
Then we have bna ∈ M for some positive n. Now

bna = b(n−1)ba = b(n−1)a = b(n−2)ba = · · · = ba = a ∈ M

a contradiction. Therefore R is reduced. Similarly, if any maximal right ideal of a
semiprimitive ring R is a GW-ideal, we also obtain that R is reduced. ¤

According to Lemma 2.5 and Theorem 5 in [12], we have

Corollary 2.6. If R is a semiprimitive left SGPF ring whose every maximal left
ideal is a GW-ideal, then R is fully left and right idempotent.

Lemma 2.7. Let R be a SGPF ring. If I is an ideal of R, then R/I is a SGPF
ring.

Proof. Suppose R = R/I and L is a simple left R-module. Then L is a simple left
R-module. Since R is a SGPF ring, L is flat or GP-injective as left R-module. If
L is a flat left R-module. It is easy to see that L is flat. If L is a GP-injective
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left R-module. For any a ∈ L, there exists a positive integer n such that any
left R-homomorphism from Ran to L extends to one from R to L. If f is any
R-homomorphism from Ran to L, f can also be viewed as R-homomorphism. Let
π : Ran → Ran be a canonical R-homomorphism. It yields that f = fπ : Ran → L
is a left R- homomorphism. Hence f(an) = anb for some b ∈ L. One has that
f(an) = fπ(an) = f(an) = anb = anb which implies L is GP-injective. Therefore
R/I = R is a SGPF ring. ¤

Theorem 2.8. Let R be a left SGPF ring. If every maximal left ideal of R is a
GW-ideal, then R/J(R) is strongly regular.

Proof. Let B = R/J(R), then J(B) = 0. For any maximal left ideal L of B, there
exists a maximal left ideal M such that M ⊇ J(R) and L = M/J(R). Since M is
a left GW-ideal of R, L ia a GW-ideal of B by Lemma 2.4. It follows that B is a
reduced left SGPF ring by Lemma 2.5 and Lemma 2.7. Suppose Bc+ lB(c) 6= B for
some c ∈ B, then it must be contained in a maximal left ideal L which implies B/L is
simple. Hence B/L is either GP-injective or flat. If B/L is GP-injective, l(cn) = l(c)
since B is reduced. It follows that f : Bcn → B/L given by f(bcn) = b + L for
any b ∈ B is well-defined. Hence 1 + L = f(cn) = cnd + L for some d ∈ B which
implies 1 − cnd ∈ L. Since L is a GW-ideal of B. Following the proof in Theorem
2.2, we have 1 ∈ L, which is a contradiction. If B/L is flat, then c = cu for some
u ∈ L ([2]). It follows that 1− u = rB(c) = lB(c) ⊆ L, whence 1 ∈ L, which is also
a contradiction. This shows that

Bc + lB(c) = B

for any c ∈ B. Thus there exists b ∈ B such that c = bc2 for any c ∈ B. Therefore
R/J(R) = B is strongly regular. ¤

Corollary 2.9 ([8]). If R is a left quasi-duo SPF ring, then R/J(R) is strongly
regular.

Theorem 2.10. Let R be a left SGPF ring. If every maximal right ideal of R is a
GW-ideal, then R/J(R) is strongly regular.

Proof. Let B = R/J(R). As the proof in Theorem 2.8, we have B is reduced.
Moreover B is a left SGPF ring by Lemma 2.7. If cB + lB(c) 6= B for some c ∈ B.
Following the process of the proof in Theorem 2.2, then there exist a maximal left
ideal L and a positive integer n such that

lB(c) + BcnB ⊆ L ( B

It follows B/L is either GP-injective or flat. If B/L is GP-injective. we define map
g : B(cn)m → B/L by g(b(cn)m) = b + L. Since B is reduced, l((cn)m) = l(c).
It follows that map g is well-defined. Then we have 1 − (cn)md ∈ L. Hence
1 = (1− (cn)md) + (cn)md ∈ L since (cn)md ∈ BcnB ⊆ L, a contradiction. If B/L
is flat. As the proof in Theorem 2.8, one has 1 ∈ L, a contradiction. This proves
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that
cB + lB(c) = B

for any c ∈ B. So for any c ∈ B, there exists b ∈ B such that c = cbc. This means
that B is a von Neumann regular ring. Therefore R/J(R) = B is strongly regular.
¤
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