(m, n) -CLOSED δ -PRIMARY IDEALS IN AMALGAMATION

Mohammad Hamoda and Mohammed Issoual

ABSTRACT. Let R be a commutative ring with $1 \neq 0$. Let $Id(R)$ be the set of all ideals of R and let $\delta : Id(R) \longrightarrow Id(R)$ be a function. Then δ is called an expansion function of the ideals of R if whenever L, I, J are ideals of R with $J \subseteq I$, then $L \subseteq \delta(L)$ and $\delta(J) \subseteq \delta(I)$. Let δ be an expansion function of the ideals of R and $m \geq n > 0$ be positive integers. Then a proper ideal I of R is called an (m, n) -closed δ -primary ideal (resp., weakly (m, n) -closed δ -primary ideal) if $a^m \in I$ for some $a \in R$ implies $a^n \in \delta(I)$ (resp., if $0 \neq a^m \in I$ for some $a \in R$ implies $a^n \in \delta(I)$). Let $f: A \longrightarrow B$ be a ring homomorphism and let J be an ideal of B. This paper investigates the concept of (m, n) -closed δ -primary ideals in the amalgamation of A with B along J with respect to f denoted by $A \bowtie^f J$.

1. Introduction

We assume throughout the whole paper that all rings are commutative with $1 \neq 0$. The notion of an (m, n) -closed ideal was introduced and defined by Anderson and Badawi in [\[1\]](#page-7-0), as follows: Let R be a ring, and m and n be two positive integers with $1 \leq n \leq m$. A proper ideal I of R is called an (m, n) -closed ideal of R if whenever $a^m \in I$ for some $a \in R$ implies $a^n \in I$ I. Later Anderson et al. introduced in $[2]$ the concept of a weakly (m, n) -closed ideal. According to [\[2\]](#page-7-1), a proper ideal I of R is called a weakly (m, n) closed ideal of R if whenever $0 \neq a^m \in I$ for some $a \in R$ implies $a^n \in I$. In [\[3\]](#page-7-2), the authors studied the notions of (m, n) -closed ideals in the trivial ring extension. Let A be a commutative ring and E be an A -module. The trivial ring extension of A by E (also called the idealization of E over A) is the ring $R := A(+)E$ whose underlying group is $A \times E$ with multiplication given by $(a, e)(a', e') = (aa', ae' + a'e)$. Trivial ring extension have been studied extensively. Considerable work, part of which is summarized in Huckaba's book [\[11\]](#page-7-3), has been concerned with trivial ring extensions; these extensions have been useful for solving many open problems and conjectures. We recall that if I is a

©2024 Korean Mathematical Society

575

Received October 8, 2023; Accepted February 29, 2024.

²⁰²⁰ Mathematics Subject Classification. Primary 13E015, 13E10, 13E99.

Key words and phrases. δ-primary ideal, (m, n) -closed δ-primary ideal, weakly (m, n) closed δ-primary ideal, Amalgamation, trivial extension.

proper ideal of A, then $I(+)E$ is an ideal of $A(+)E$. And if F is a submodule of E such that $IE \subseteq F$, then $I(+)F$ is an ideal of $A(+)E$.

Let (A, B) be a pair of rings, $f : A \longrightarrow B$ be a ring homomorphism and J be an ideal of B. In this setting, we can consider the following subring of $A \times B$:

$$
A \bowtie^f J := \{(a, f(a) + j) | a \in A, j \in J\}
$$

called the amalgamation of A and B along J with respect to f , introduced and studied by D'Anna, Finocchiaro and Fontana in [\[4–](#page-7-4)[6\]](#page-7-5). In particular, they have studied amalgamations in the frame of pull-backs which allowed them to establish numerous(prime) ideals and ring-theoretic basic properties for this new construction. This construction is a generalization of the amalgamated duplication of a ring along an ideal (introduced and studied by D'Anna and Fontanna in [\[7,](#page-7-6)[8\]](#page-7-7). The interest of amalgamation resides, partly, in its stability to cover several basic constructions in commutative algebra, including pull-back and trivial ring extensions (also called Nagat's idealizations)(cf. [\[13,](#page-7-8) page 2])

In [\[12\]](#page-7-9), Issoual et al. studied the concept of an (m, n) -closed ideal in amalgamated algebras along an ideal. In this paper, we will study a new type of concept of ideals called (m, n) -closed δ -primary and weakly (m, n) -closed δ primary ideals, by continuing the study already made in the [\[9,](#page-7-10) [10\]](#page-7-11).

Let $Id(A)$ be the set of all ideals of R. Zhao [\[14\]](#page-7-12) introduced the concept of expansion of ideals of R. We recall from [\[14\]](#page-7-12) that a function $\delta : Id(A) \longrightarrow Id(A)$ is called an expansion function of the ideals of R if whenever L, I, J are ideals of R with $J \subseteq I$, then $L \subseteq \delta(L)$ and $\delta(I) \subseteq \delta(I)$. Recall from [\[14\]](#page-7-12) that a proper ideal of R is said to be δ -primary ideal of R if $a, b \in R$ with $ab \in I$ implies $a \in I$ or $b \in \delta(I)$, where δ is an expansion function of ideals of R. The concept of a δ -primary ideal was extended to the context of an (m, n) -closed- δ -primary ideal. Recall from [\[9\]](#page-7-10) that a proper ideal I of R is said to be an (m, n) -closedδ-primary ideal of R if whenever $a^m \in I$ for some $a \in R$, then $a^n \in \delta(I)$. In [\[10\]](#page-7-11), the authors studied the concept of a weakly (m, n) -closed- δ -primary ideal. In this paper, we study the notion of a weakly (m, n) -closed- δ -primary ideal in the amalgamation of A with B along an ideal J with respect to f denoted by $A \bowtie^f J$.

2. On some (m, n) -closed δ -primary ideals of amalgamation $A \bowtie^f J$

To avoid unnecessary repetition, let us fix the notation for the rest of the paper. Let $f: A \longrightarrow B$ be a ring homomorphism and J be an ideal of B. All along this paper, $A \bowtie^f J$ will denote the amalgamation of A and B along J with respect to f. Let I be an ideal of A and K be an ideal of $f(A) + J$. Notice that $I \bowtie^f J := \{(i, f(i) + j)|i \in I, j \in J\}$ and $\overline{K}^f := \{(a, f(a) + j)|a \in A, j \in J\}$ $J, f(a) + j \in K$ are ideals of $A \bowtie^f J$. Our first result gives a necessary and sufficient condition for the ideals $I \bowtie^f J$ and \overline{K}^f to be (m, n) -closed- δ -primary ideals of $A \bowtie^f J$, for all positive integers m and n, with $1 \leq n \leq m$ and an arbitrary expansion δ .

Now, let δ : $Id(A) \rightarrow Id(A)$ and δ_1 : $Id(f(A) + J) \rightarrow Id(f(A) + J)$ are expansion functions of $Id(A)$ and $Id(f(A) + J)$, respectively. We define a function $\delta_{\bowtie f}: Id(A \bowtie^f J) \longrightarrow Id(A \bowtie^f J)$ such that

$$
\delta_{\bowtie^f} (I \bowtie^f J) = \delta(I) \bowtie^f J
$$

for every ideal I of A and

$$
\delta_{\bowtie f}(\overline{K}^f) = \{(a, f(a) + j)|a \in A, j \in J, f(a) + j \in \delta_1(K)\}\
$$

for every ideal K of $f(A) + J$. Then, $\delta_{\bowtie f}$ is an expansion function of ideals of $A \bowtie^f J$.

Recall the notions of an (m, n) -closed δ -primary ideal defined in the intro-duction. According to [\[9\]](#page-7-10), a proper ideal I of a commutative ring R is said to be an (m, n) -closed δ -primary ideal of R if $a^m \in I$ implies that $a^n \in \delta(I)$ for each $a \in A$, where m and n, with $m > n$ are positive integers.

Our first result gives a necessary and sufficient condition for the ideals $I \bowtie^f J$ and \overline{K}^f to be (m, n) -closed δ -primary ideals of $A \bowtie^f J$ for all positive integers m and n, with $1 \leq n < m$ and an arbitrary expansion δ .

Theorem 2.1. Under the above notations, the following statements hold.

- (1) $I \bowtie^f J$ is an (m, n) -closed δ_{\bowtie^f} -primary ideal of $A \bowtie^f J$ if and only if I is an (m, n) -close δ -primary ideal of A.
- (2) \overline{K}^f is an (m, n) -closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$ if and only if K is an (m, n) -closed δ_1 -primary ideal of $f(A) + J$.

Proof. (1) Suppose that I is an (m, n) -closed δ -primary ideal of A and let $(a, f(a) + j)^m \in I \bowtie^f J$ for some $(a, f(a) + j) \in A \bowtie^f J$. Then, $a^m \in I$. The fact that I is an (m, n) -closed δ -primary ideal of A, gives $a^n \in \delta(I)$, which implies $(a, f(a)+j)^n \in \delta(I) \bowtie^f J = \delta_{\bowtie^f}(I \bowtie^f J)$. Hence, $I \bowtie^f J$ is an (m, n) closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$. Conversely, suppose that $I \bowtie^f J$ is an (m, n) -closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$. Let $a^m \in I$ for some $a \in A$. Then, $(a, f(a))^m \in I \bowtie^f J$ which implies $(a, f(a))^n \in \delta_{\bowtie^f} (I \bowtie^f J) = \delta(I) \bowtie^f J$. Then, $a^n \in \delta(I)$. Hence, I is an (m, n) -closed δ -primary ideal of A, as desired

(2) Suppose that \overline{K}^f is an (m, n) -closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$. We claim that K is an (m, n) -closed δ_1 -primary ideal of $f(A) + J$. Indeed, let $(f(a) + j)^m \in K$ with $f(a) + j \in f(A) + J$. Thus, $(a, f(a) + j)^m \in \overline{K}^f$. Since \overline{K}^f is an (m, n) -closed $\delta_{\bowtie f}$ -primary ideal, so $(a, f(a) + j)^n \in \delta_{\bowtie^f}(\overline{K}^f)$ $\{(a, f(a)+j) | a \in A, j \in J, f(a)+j \in \delta_1(K)\}.$ Therefore, $(f(a)+j)^n \in \delta_1(K)$. Hence, K is an (m, n) -closed δ_1 -primary ideal of $f(A) + J$. Conversely, assume that K is an (m, n) -closed δ_1 -primary ideal of $f(A) + J$. Let $(a, f(a) + j)^m \in \overline{K}^f$ with $(a, f(a)+j) \in A \bowtie^f J$. Obviously, $f(a)+j \in f(A)+j$ and $(f(a)+j)^m \in K$, which is an (m, n) -closed δ_1 -primary ideal. So, $(f(a) + j)^n \in \delta_1(K)$, which implies $(a, f(a) + j)^n \in \delta_{\bowtie f}(\overline{K}^f)$. Hence, \overline{K}^f is an (m, n) -closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$, as desired.

Let I be a proper ideal of A . The (amalgamated) duplication of A along I is a special amalgamation given by

$$
A \bowtie I := A \bowtie^{id_A} I = \{(a, a+i)| a \in A, i \in I\}.
$$

Let J and K be two proper ideals of A, we recall that $J \bowtie I := \{(a, a + i)|a \in$ $A, i \in I$ and $\overline{K} := \{(a, a + i) | a \in A, i \in I, a + i \in K\}$ are ideals of $A \bowtie I$.

Now, let $\delta : Id(A) \to Id(A)$ be an expansion function of $Id(A)$. We define a function $\delta_{\bowtie}: Id(A \bowtie I) \longrightarrow Id(A \bowtie I)$ such that

$$
\delta_{\bowtie}(J \bowtie I) = \delta(J) \bowtie^f I
$$

for every ideal J of A and

$$
\delta_{\bowtie}(\overline{K}) = \{(a, a+i)| \ a \in A, i \in I, a+i \in \delta(K)\}
$$

for every ideal K of A. Then, δ_{\bowtie} is an expansion function of ideals of $A \bowtie I$. The next corollary is an immediate consequence of Theorem [2.1.](#page-2-0)

Corollary 2.2. Let A be ring and I be an ideal of A. Consider K an ideal of A. Then the following statements hold:

- (1) $J \bowtie I$ is an (m, n) -closed δ_{\bowtie} -primary ideal of $A \bowtie I$ if and only if I is an (m, n) -closed δ -primary ideal of A.
- (2) \overline{K} is an (m, n) -closed δ_{\bowtie} -primary ideal of $A \bowtie I$ if and only if K is an (m, n) -closed δ -primary ideal of A.

Example 2.3. The Nagat's idealization can be interpreted as a particular case of the general amalgamation construction. Let A be a ring, M be an A -module and $B = A(+)M$ be the trivial extension of A by M. Let I be an ideal of A, and set $J = 0(+)M$. Consider the ring homomorphism $f : A \longrightarrow B$ defined by $f(a) = (a, 0)$. The, the ring $A \bowtie^{f} J$ coincides with the amalgamation $A \bowtie^{f} J$. Then $I(+)M$ is an (m, n) -closed δ_f -primary ideal of $A(+)M$ if and only if I is an (m, n) -closed δ -primary ideal of A.

3. On some weakly (m, n) -closed δ -primary ideal of $A \bowtie^f J$

Recall the notions of a weakly (m, n) -closed δ -primary ideal defined in the introduction. According to [\[10\]](#page-7-11), a proper ideal I of a commutative ring R is said to be a weakly (m, n) -closed δ -primary ideal of R if $0 \neq a^m \in I$ implies that $a^n \in \delta(I)$ for each $a \in A$, where m and n, with $m > n$ are positive integers.

Definition. Let R be a commutative ring and I be a proper ideal of R . Let $a \in R$. We say that a is a $\delta(m, n)$ -unbreakable element of I if $a^m = 0$ and $a^n \notin \delta(I)$.

Remark 3.1. If I is a weakly (m, n) -closed δ-primary ideal without $\delta(m, n)$ unbreakable element, then I is an (m, n) -closed δ -primary ideal of R.

Our goal is to study the necessary and sufficient conditions for $I \bowtie^f J$ and \overline{K} to be weakly (m, n) -closed δ -primary ideals of $A \bowtie^f J$ that are not (m, n) -closed δ -primary ideals.

Theorem 3.2. Under the above notations in Section 2, the following statements are equivalent:

- (1) $I \bowtie^f J$ is a weakly (m, n) -closed δ_{\bowtie^f} -primary ideal of $A \bowtie^f J$ that is not (m, n) -closed $\delta_{\bowtie f}$ -primary.
- (2) I is a weakly (m, n) -closed δ -primary ideal of A that is not (m, n) closed δ -primary and for every δ - (m, n) -unbreakable-zero element a of *I*, we have $(f(a) + j)^m = 0$ for every $j \in J$.

Proof. (1) \Rightarrow (2). Assume that $I \bowtie^{f} J$ is a weakly (m, n) -closed δ -primary ideal of $A \bowtie^f J$. Let $0 \neq a^m \in I$. Then, $0 \neq (a, f(a))^m \in I \bowtie^f J$ which implies $(a, f(a))^n \in \delta_{\bowtie f}(I \bowtie^f J) = \delta(I) \bowtie^f J$. Thus, $a^n \in \delta(I)$ and consequently I is a weakly (m, n) -closed δ -primary ideal of A. On the other hand, by the Theorem [2.1,](#page-2-0) we have I is not an (m, n) -closed δ -primary ideal of A. So, there exists a $\delta(m, n)$ -unbreakable-zero element a of I. We will show that $(f(a) + j)^m = 0$ for every j in J. By the way of contradiction, suppose that $0 \neq (f(a) + j)^m$ for some $j \in J$. Then, $0 \neq (a, f(a) + j)^m \in I \bowtie^f J$. As $I \bowtie^f J$ is a weakly (m, n) -closed $\delta_{\bowtie f}$ -primary, we get $(a, f(a) + j)^n \in \delta_{\bowtie f} (I \bowtie^f J)$, which implies $a^n \in \delta(I)$. As desired contradiction.

 $(2) \Rightarrow (1)$. Let $0 \neq (a, f(a) + j)^m \in I \bowtie^f J$ for some $a \in A$ and $j \in J$. Then, $a^m \in I$. If $0 \neq a^m$, as I is a weakly (m, n) -closed δ -primary ideal, we get $a^n \in \delta(I)$. Hence, $(a, f(a) + j)^n \in \delta_{\bowtie f}(I \bowtie^f J)$. Now assume that $a^m = 0$, necessarily $a^n \in \delta(I)$. Suppose on the contrary that $a^n \notin \delta(I)$, then a is a δ - (m, n) -unbreakable-zero element of *I*. So, by assumption we have $(f(a)+j)^m =$ 0. This implies $(a, f(a) + j)^m = 0$, which is a contradiction. Hence, $I \bowtie^f J$ is a weakly (m, n) -closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$. \Box

Corollary 3.3. Suppose that $char(f(A) + J) = m$ and $J^m = 0$. Then the following statements are equivalent:

- (1) $I \bowtie^f J$ is a weakly (m, n) -closed δ -primary ideal of $A \bowtie^f J$ that is not (m, n) -closed δ -primary.
- (2) I is a weakly (m, n) -closed δ -primary ideal of A that is not (m, n) -closed δ-primary.

Proof. It suffices to show that $(f(a) + j)^m = 0$ for each (m, n) -δ-unbreakable element a of I. Indeed, for every $j \in J$, we have

$$
(f(a) + j)^m = f(a^m) + \sum_{k=1}^{m-1} {m \choose k} f(a^{m-k})j^k + j^m.
$$

As $J^m = 0$, we got $j^m = 0$ for every $j \in J$. On the other hand, we have $\left(m\right)$ k $= 0$ since $char(f(A) + j) = m$ and m divides $\begin{pmatrix} m \\ j \end{pmatrix}$ k . By using the Binomial theorem, it follows that $(f(a)+j)^m = 0$. Now, the result follows from the Theorem [3.2.](#page-4-0) \Box

Corollary 3.4. Let A be a commutative ring, and I be a proper ideal of A. Let K be a proper ideal of A . Then the following statements are equivalent:

- (1) $K \bowtie I$ is a weakly (m, n) -closed δ_{\bowtie} -primary ideal of $A \bowtie I$ which is not (m, n) -closed δ_{\bowtie} -primary.
- (2) K is a weakly (m, n) -closed δ -primary ideal of A which is not (m, n) -closed δ -primary and $(a+i)^m = 0$ for every δ - (m, n) -unbreakable element a of K and every element $i \in I$.

Proof. Take $A = B$ and $f = id_A$ in Theorem [3.2,](#page-4-0) where id_A is the identity map $id_A : A \to A$.

Corollary 3.5. Let I be a proper ideal of A and $m \ge n > 0$ be two positive integers. Then the following are equivalent:

- (1) $I \bowtie^f J$ is a weakly (m, n) -closed ideal of $A \bowtie^f J$ that is not (m, n) closed.
- (2) I is a weakly (m, n) -closed ideal of A that is not (m, n) -closed and for every (m, n) -unbreakable element a of I, we have $(f(a) + j)^m = 0$ for each $j \in J$.

Proof. It suffices to check $\delta = id_{Id(A)}$ in the Theorem [3.2.](#page-4-0)

Corollary 3.6. Let A be a commutative ring, M be an A-module. Let I be a proper ideal of A. Then the following statements are equivalent:

- (1) $I(+)M$ is a weakly (m, n) -closed $\delta_{(+)}$ -primary ideal of $A(+)M$ that is not (m, n) -closed $\delta_{(+)}$ -primary.
- (2) I is a weakly (m, n) -closed δ -primary ideal of A that is not (m, n) clo-sed δ -primary and $m(a^{m-1})M = 0$ for every δ - (m, n) -unbreakable element a of I.

Proof. Let $f : A \rightarrow B$ be the canonical homomorphism defined by $f(a) = (a, 0)$ for every $a \in A$ and $J := 0 \propto M$. It not difficult to check that $A \propto E$ is naturally isomorphic to $A \bowtie^f J$, and the ideal $I \bowtie^f J$ is canonically isomorphic to $I \propto M$. By Theorem [3.2,](#page-4-0) we have $I(+)M$ is a weakly (m, n) -closed $\delta_{(+)}$ primary ideal of $A(+)M$ which is not (m, n) -closed $\delta_{(+)}$ -primary if and only if I is a weakly (m, n) -closed δ -primary ideal of A which is not (m, n) -closed δ primary and for every (m, n) -unbreakable element a of I, we have $(f(a)+j)^m =$ 0 for every $j \in J = (0)(+)M$. Now, if $x \in M$, then $((a, 0) + (0, x))^m =$ $(a^m, ma^{m-1}x) = 0$, thus $m(a^{m-1}x) = 0$. Hence, $m(a^{m-1}M) = 0$.

Remark 3.7. If I is a weakly (m, n) -closed δ -primary ideal of A, then $I \bowtie^f B$ need not to be a weakly (m, n) -closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$. Let $A = Z_8$. Then, $I = \{0\}$ is clearly a weakly $(3, 1)$ -closed $\delta_{\sqrt{I}}$ -primary ideal that not $(3, 1)$ closed $\delta_{\sqrt{I}}$ -primary, since $2^3 \in \{0\}$ but $2^2 \notin \{0\}$. Let M be an A-module and set $J := 0(+)M$. Let $f : A \hookrightarrow A(+)M$ be the canonical homomorphism defined by $f(a) = (a, 0)$ for every $a \in A$. It is clear to see that $0 \bowtie^{f} J$ is isomorphic to $0(+)M$. Since $3(2^2)(0(+)M) \neq 0$ by the Corollary [3.6,](#page-5-0) we conclude that $0 \bowtie^f J$ is not a weakly (3, 1)-closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$.

The next result provides the necessary and sufficient conditions for \overline{K} to be weakly (m, n) -closed δ -primary ideals of $A \bowtie^f J$, which are not (m, n) -closed δ- primary ideals.

Theorem 3.8. The following statements are equivalent.

- (1) \overline{K}^f is a weakly (m, n) -closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$ which is not (m, n) -closed $\delta_{\bowtie f}$ -primary.
- (2) K is a weakly (m, n) -closed δ_1 -primary ideal of $f(A) + J$ which is not (m, n) -closed δ_1 -primary and $a^m = 0$ for every δ - (m, n) -unbreakablezero $f(a) + j$ of K.

Proof. (1) \Rightarrow (2). Suppose \overline{K}^f is a weakly (m, n) -closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$. We claim that K is a weakly (m, n) -closed δ_1 -primary ideal of $f(A) + J$. Indeed, let $0 \neq (f(a) + j)^m \in K$ with $f(a) + j \in f(A) + J$. Then, $0 \neq (a, f(a) + j)^m \in \overline{K}^f$. Since \overline{K}^f is a weakly (m, n) -closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$, we have $(a, f(a) + j)^n \in \overline{K}^f$. Therefore, $f((a) + j)^n \in K$. Hence, K is a weakly (m, n) -closed δ_1 -primary ideal of $f(A) + J$. By Theorem [2.1\(](#page-2-0)2), K is not an (m, n) -closed δ_1 -primary ideal of $f(A) + J$. Now, let $f(a) + j \in f(A) + J$ be an (m, n) -unbreakable-zero element of K. We claim that $a^m = 0$. Indeed if $0 \neq a^m$, we get $0 \neq (a, f(a) + j)^m \in \overline{K}^f$, then $(a, f(a) + j)^n \in \overline{K}^f$, which implies $(f(a) + j)^n \in K$. This is a contradiction. Hence, $a^m = 0$.

 $(2) \Rightarrow (1)$. Suppose that K is a weakly (m, n) -closed δ_1 -primary ideal of $f(A) + J$. Let $0 \neq (a, f(a) + j)^m \in \overline{K}^f$ for some $(a, f(a) + j) \in A \bowtie^f J$. Then, obviously, $f(a) + j \in f(A) + J$ and $(f(a) + j)^m \in K$. If $0 \neq (f(a) + j)^m$, as K is a weakly (m, n) -closed δ_1 -primary ideal of $f(A) + J$, we get $(f(a) + j)^n \in K$, which implies $(a, f(a) + j)^n \in \overline{K}^f$. Now, if $(f(a) + j)^m = 0$. We claim that $(f(a)+j)^n \in K$, for if not, we get $f(a)+j$ is (m, n) -unbreakable-zero. Then by assumption, we have $a^m = 0$ and thus $(a, f(a)+j)^m = 0$. This is a contradiction. Thus, $(f(a) + j)^n \in K$. Therefore, $(a, f(a) + j)^n \in \overline{K}^f$. Hence, \overline{K}^f is a weakly (m, n) -closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$. On the other hand, by Theorem [2.1,](#page-2-0) we have \overline{K}^f is not an (m, n) -closed $\delta_{\bowtie f}$ -primary ideal of $A \bowtie^f J$. \Box

Let I be a proper ideal of A . The (amalgamated) duplication of A along I is a special amalgamation given by

$$
A \bowtie I := A \bowtie^{id_A} I = \{(a, a+i)|a \in A, i \in I\}.
$$

If K is an ideal of A, then $\overline{K} := \{(a, a + i)|a \in A, i \in I, a + i \in K\}$ is an ideal of $A \bowtie I$.

The next corollary is an immediate consequence of Theorem [3.2.](#page-4-0)

Corollary 3.9. Let A be a ring and I be a proper ideal of A . Let K be a proper ideal of A. Then the following are equivalent:

(1) $\overline{K} := \{(a, a + i)|a \in A, i \in I, a + i \in K\}$ is a weakly (m, n) -closed δ_{\bowtie} primary ideal of $A \bowtie I$ that is not an (m, n) -closed δ -primary ideal.

(2) K is a weakly (m, n) -closed δ -primary ideal of A that is not an (m, n) closed δ -primary ideal and $(a - i)^m = 0$ for every δ - (m, n) unbreakable element a of K and for each $i \in I$.

Proof. (1) \implies (2). It follows from the Theorem [3.8](#page-6-0) with $A = B$ and $f = id_A$. Now, if $a \in A$ is a δ - (m, n) -unbreakable element of K, that is $a^m = 0$ and $a^n \notin \delta(K)$, then $(a - i, a) \notin \delta_{\bowtie}(\overline{K})$. This necessarily implies that $(a - i)^m = 0$ for every element $i \in I$. This completes the proof of $((1) \Longrightarrow (2))$.

 $(2) \implies (1)$. It follows from the Theorem [3.8.](#page-6-0)

References

- [1] D. F. Anderson and A. R. Badawi, On (m, n) -closed ideals of commutative rings, J. Algebra Appl. 16 (2017), no. 1, Paper No. 1750013, 21 pp. [https://doi.org/10.1142/](https://doi.org/10.1142/S021949881750013X) [S021949881750013X](https://doi.org/10.1142/S021949881750013X)
- [2] D. F. Anderson, A. Badawi, and B. Fahid, Weakly (m, n) -closed ideals and (m, n) -von Neumann regular rings, J. Korean Math. Soc. 55 (2018), no. 5, 1031-1043. [https:](https://doi.org/10.4134/JKMS.j170342) [//doi.org/10.4134/JKMS.j170342](https://doi.org/10.4134/JKMS.j170342)
- [3] A. R. Badawi, M. Issoual, and N. Mahdou, On n-absorbing ideals and (m, n) -closed ideals in trivial ring extensions of commutative rings, J. Algebra Appl. 18 (2019), no. 7, Paper No. 1950123, 19 pp. <https://doi.org/10.1142/S0219498819501238>
- [4] M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, Commutative Algebra and its Applications, 155–172, Walter de Gruyter, Berlin, 2009.
- [5] M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633–1641. <https://doi.org/10.1016/j.jpaa.2009.12.008>
- [6] M. D'Anna, C. A. Finocchiaro, and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44 (2016), no. 5, 1836–1851. <https://doi.org/10.1080/00927872.2015.1033628>
- [7] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443–459. [https://doi.org/10.1142/](https://doi.org/10.1142/S0219498807002326) [S0219498807002326](https://doi.org/10.1142/S0219498807002326)
- [8] M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45 (2007), no. 2, 241–252. [https://doi.org/](https://doi.org/10.1007/s11512-006-0038-1) [10.1007/s11512-006-0038-1](https://doi.org/10.1007/s11512-006-0038-1)
- M. Hamoda, On (m, n) -closed δ -primary ideals of commutative rings, Palest. J. Math. 12 (2023), no. 2, 280–290.
- [10] M. Hamoda and M. Issoual, On weakly (m, n) -closed δ -primary ideals of commutative rings, Proyecciones 42 (2023), no. 5, 1289–1306. [https://doi.org/10.22199/issn.](https://doi.org/10.22199/issn.0717-6279-5509) [0717-6279-5509](https://doi.org/10.22199/issn.0717-6279-5509)
- [11] J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- [12] M. Issoual, N. Mahdou, and M. A. S. Moutui, $On (m, n)$ -closed ideals in amalgamated algebra, Int. Electron. J. Algebra 29 (2021), 134–147. [https://doi.org/10.4208/cicp.](https://doi.org/10.4208/cicp.oa-2020-0041) [oa-2020-0041](https://doi.org/10.4208/cicp.oa-2020-0041)
- [13] M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, no. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1962.
- [14] D. Zhao, δ -primary ideals of commutative rings, Kyungpook Math. J. 41 (2001), no. 1, 17–22.

MOHAMMAD HAMODA Department of Mathematics Faculty of Applied Science Al-Aqsa University P. O. Box 4051, Gaza, Palestine Email address: ma.hmodeh@alaqsa.edu.ps

MOHAMMED ISSOUAL Departement of Mathematics CRMEF RABAT-SALÉ-KENITRA: Annexe CRMEF KHMISSET, Morocco $\emph{Email address:}$ is
soual2@yahoo.fr