• 제목/요약/키워드: question answering systems

검색결과 54건 처리시간 0.02초

TITIUS-BODE'S Relation and 55 Cancri

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제25권3호
    • /
    • pp.239-244
    • /
    • 2008
  • Two kinds of important issues on Titius-Bode's relation have been discussed up to now: one is if there is a simple mathematical relation between distances of natural bodies orbiting a central body, and the other is if there is any physical basis for such a relation. These may be tackled by answering a question whether Titius-Bode's relation is valid universally in exo-planetary systems. We have examined whether Titius Bode's relation is also applicable to exo-planetary systems by statistically studying the distribution of the ratio of rotational periods of two planets in an exo-planetary system, 55 Cnc, by comparing it with that derived from Titius-Bode's relation. We find that the distribution of the ratio of rotational periods of randomly chosen two planets in the 55 Cnc system is apparently inconsistent with that derived from Titius-Bode's relation. The probability that two data sets are drawn from the same distribution function is 50%. We also find that the Fourier power spectra show that the distribution of the semi-major axis of planets in the 55 Cnc system seems to be stretched. We conclude by pointing out that large numbers of planets should be examined to more convincingly explain the distribution of the distance of planetary formation regions.

거래가시성: 성공적인 SIS의 재해석을 통한 새로운 e-Commerce 프레임워크 (Transaction Visibility: Re-Interpretation of Successful SIS Cases, and Implications for E-Commerce)

  • 양희동;최인영
    • Asia pacific journal of information systems
    • /
    • 제13권1호
    • /
    • pp.73-101
    • /
    • 2003
  • Firms can create additional customer values by changing the visibility characteristic of business transactions. Both visible and invisible transactions can provide distinctive values to the customers. Visible transactions are those that are open to the customer: the customer can see the detailed logic of the transaction and may manipulate specific variables to control the transaction process. Invisible transactions mean that customers have little ability to control the transaction flow and may even be insulated from seeing the transaction. These invisible transactions will be taken care of only by suppliers, and be regarded as a process performed by suppliers. This paper pursues finding out the contingencies of successful transaction visibility change by answering to the following question; "when does increasing(or decreasing) transaction visibility make sense to customers?" This archival case study finds out that transaction visibility change should fit to the need and capabilities of customers. Increasing transaction visibility makes sense when customers need a certain supplier's performance and have a confidence in the capabilities of executing the performance. By the same token, decreasing transaction visibility makes sense when customers have substantial troubles in conducting their current transaction actions or when customers don't feel it necessary to conduct them separately because they can be derived from other action.

CNN-based Skip-Gram Method for Improving Classification Accuracy of Chinese Text

  • Xu, Wenhua;Huang, Hao;Zhang, Jie;Gu, Hao;Yang, Jie;Gui, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.6080-6096
    • /
    • 2019
  • Text classification is one of the fundamental techniques in natural language processing. Numerous studies are based on text classification, such as news subject classification, question answering system classification, and movie review classification. Traditional text classification methods are used to extract features and then classify them. However, traditional methods are too complex to operate, and their accuracy is not sufficiently high. Recently, convolutional neural network (CNN) based one-hot method has been proposed in text classification to solve this problem. In this paper, we propose an improved method using CNN based skip-gram method for Chinese text classification and it conducts in Sogou news corpus. Experimental results indicate that CNN with the skip-gram model performs more efficiently than CNN-based one-hot method.

Knowledge Base Associated with Autism Construction Using CRFs Learning

  • Yang, Ronggen;Gong, Lejun
    • Journal of Information Processing Systems
    • /
    • 제15권6호
    • /
    • pp.1326-1334
    • /
    • 2019
  • Knowledge base means a library stored in computer system providing useful information or appropriate solutions to specific area. Knowledge base associated with autism is the complex multidimensional information set related to the disease autism for its pathogenic factor and therapy. This paper focuses on the knowledge of biological molecular information extracted from massive biomedical texts with the aid of widespread used machine learning methods. Six classes of biological molecular information (such as protein, DNA, RNA, cell line, cell component, and cell type) are concerned and the probability statistics method, conditional random fields (CRFs), is utilized to discover these knowledges in this work. The knowledge base can help biologists to etiological analysis and pharmacists to drug development, which can at least answer four questions in question-answering (QA) system, i.e., which proteins are most related to the disease autism, which DNAs play important role to the development of autism, which cell types have the correlation to autism and which cell components participate the process to autism. The work can be visited by the address http://134.175.110.97/bioinfo/index.jsp.

Towards Improving Causality Mining using BERT with Multi-level Feature Networks

  • Ali, Wajid;Zuo, Wanli;Ali, Rahman;Rahman, Gohar;Zuo, Xianglin;Ullah, Inam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권10호
    • /
    • pp.3230-3255
    • /
    • 2022
  • Causality mining in NLP is a significant area of interest, which benefits in many daily life applications, including decision making, business risk management, question answering, future event prediction, scenario generation, and information retrieval. Mining those causalities was a challenging and open problem for the prior non-statistical and statistical techniques using web sources that required hand-crafted linguistics patterns for feature engineering, which were subject to domain knowledge and required much human effort. Those studies overlooked implicit, ambiguous, and heterogeneous causality and focused on explicit causality mining. In contrast to statistical and non-statistical approaches, we present Bidirectional Encoder Representations from Transformers (BERT) integrated with Multi-level Feature Networks (MFN) for causality recognition, called BERT+MFN for causality recognition in noisy and informal web datasets without human-designed features. In our model, MFN consists of a three-column knowledge-oriented network (TC-KN), bi-LSTM, and Relation Network (RN) that mine causality information at the segment level. BERT captures semantic features at the word level. We perform experiments on Alternative Lexicalization (AltLexes) datasets. The experimental outcomes show that our model outperforms baseline causality and text mining techniques.

기계학습 기반 개체명 인식을 위한 사전 자질 생성 (Feature Generation of Dictionary for Named-Entity Recognition based on Machine Learning)

  • 김재훈;김형철;최윤수
    • 정보관리연구
    • /
    • 제41권2호
    • /
    • pp.31-46
    • /
    • 2010
  • 오늘날 정보 추출의 한 단계로서 개체명 인식은 정보검색 분야 뿐 아니라 질의응답과 요약 분야에서 매우 유용하게 사용되고 있다. 개체명은 일반 단어와 달리 다양한 문서에서 꾸준히 생성되고 변화되고 있다. 이와 같은 개체명의 특성 때문에 여러 응용 시스템에서 미등록어 문제가 야기된다. 본 논문에서는 이런 미등록어 문제를 해결하기 위해 기계학습 기반 개체명 인식 시스템을 위한 새로운 자질 생성 방법을 제안한다. 일반적으로 기계학습 기반 개체명 인식 시스템은 단어 단위의 자질을 사용하므로 구절 단위의 개체명을 그대로 자질로 사용할 수 없다. 이 문제를 해결하기 위해 본 논문에서는 새로운 구절 단위의 정보를 단어 단위의 자질로 변환하는 자질 생성 방법을 제안하였다. 이 방법으로 개체명 사전과 WordNet을 개체명 인식의 자질로 사용할 수 있었다. 그 결과 영어 개체명 시스템은 F1 점수의 약 6%가 향상되었고 오류의 약 38%가 줄어들었다.

한국어 제목 개체명 인식 및 사전 구축: 도서, 영화, 음악, TV프로그램 (Named Entity Recognition and Dictionary Construction for Korean Title: Books, Movies, Music and TV Programs)

  • 박용민;이재성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권7호
    • /
    • pp.285-292
    • /
    • 2014
  • 개체명 인식은 정보검색 시스템, 질의응답 시스템, 기계번역 시스템 등의 성능을 향상시키기 위하여 사용된다. 개체명 인식은 일반적으로 PLOs(인명, 지명, 기관명)을 대상으로 하며, 주로 미등록어와 고유명사로 이루어져 있기 때문에 고유명사나 미등록어는 중요한 개체명 후보로 쓰일 수 있다. 하지만 도서명, 영화명, 음악명, TV프로그램명과 같은 제목 개체명은 PLO와는 달리 단어부터 문장까지 매우 다양한 형태를 지니고 있어서 개체명 인식이 쉽지 않다. 본 논문에서는 뉴스 기사문을 이용하여 제목 개체명을 빠르게 인식하고 자동으로 사전을 구축하는 방법을 제안한다. 먼저 특수기호로 묶인 어절을 추출하고, 주변 문맥 단어 및 단어 거리를 이용하여 SVM으로 제목 후보들을 추출하였다. 이렇게 추출된 제목 후보들은 상호 정보량을 가중치로 SVM을 이용해 제목 유형을 분류하였다.

시스템 요구사항 분석을 위한 순환적-점진적 복합 분석방법 (An Integrated Method of Iterative and Incremental Requirement Analysis for Large-Scale Systems)

  • 박지성;이재호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권4호
    • /
    • pp.193-202
    • /
    • 2017
  • 인공지능 기반 지능형 시스템의 개발에는 일반적으로 신뢰성 높은 대규모 지식처리, 지식의 통합과 인간 수준의 이해, 지식기반 인간-기계협업, 전문가 수준의 지능 서비스 등의 효과적 통합이 요구된다. 특히 빅데이터 이해 기반 자가학습형 지식베이스 및 추론 기술 개발을 목표로 하고 있는 과제의 일환으로 개발 중인 WiseKB 통합 플랫폼은 대용량 지식을 저장하여 추론과정을 통한 질의 및 응답이 가능한 대규모 지식 베이스 역할을 수행하며 이를 위하여 지식표현, 자원통합, 지식저장소, 지식베이스, 복합추론, 지식학습 등의 요소기술들의 효과적 통합이 필수적이다. 통합 플랫폼의 효율적 통합을 위해서는 정확한 요구사항 분석이 중요하며, 이는 시스템의 특성을 고려한 적절한 요구사항 분석 방법론의 적용이 필요하다. 대표적인 요구사항 분석 방법인 순차적 방법론과 순환-점진적 방법론은 WiseKB와 같은 시스템의 대규모 복합적 개발 특성을 고려할 때 다양한 요구사항을 체계적으로 파악하기에 한계가 있다. 본 논문에서는 이러한 한계를 개선하고자 순차적 방법과 순환-점진적 방법론을 결합해 각 단점을 보완하고 대규모 복합적 특성을 갖는 시스템의 요구사항 분석을 효율적으로 진행할 수 있는 통합 방법론을 제시하고, 실제 적용을 통해 그 효과를 보인다.

금융권에 적용 가능한 금융특화언어모델 구축방안에 관한 연구 (A Study on the Construction of Financial-Specific Language Model Applicable to the Financial Institutions)

  • 배재권
    • 한국산업정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.79-87
    • /
    • 2024
  • 최근 텍스트분류, 감성분석, 질의응답 등의 자연어 처리를 위해서 사전학습언어모델(Pre-trained Language Model, PLM)의 중요성은 날로 강조되고 있다. 한국어 PLM은 범용적인 도메인의 자연어 처리에서 높은 성능을 보이나 금융, 제조, 법률, 의료 등의 특화된 도메인에서는 성능이 미약하다. 본 연구는 금융도메인 뿐만 아니라 범용도메인에서도 우수한 성능을 보이는 금융특화 언어모델의 구축을 위해 언어모델의 학습과정과 미세조정 방법을 제안하는 것이 주요 목표이다. 금융도메인 특화언어모델을 구축하는 과정은 (1) 금융데이터 수집 및 전처리, (2) PLM 또는 파운데이션 모델 등 모델 아키텍처 선정, (3) 도메인 데이터 학습과 인스트럭션 튜닝, (4) 모델 검증 및 평가, (5) 모델 배포 및 활용 등으로 구성된다. 이를 통해 금융도메인의 특성을 살린 사전학습 데이터 구축방안과 효율적인 LLM 훈련방법인 적응학습과 인스트럭션 튜닝기법을 제안하였다.

Building a Business Knowledge Base by a Supervised Learning and Rule-Based Method

  • Shin, Sungho;Jung, Hanmin;Yi, Mun Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.407-420
    • /
    • 2015
  • Natural Language Question Answering (NLQA) and Prescriptive Analytics (PA) have been identified as innovative, emerging technologies in 2015 by the Gartner group. These technologies require knowledge bases that consist of data that has been extracted from unstructured texts. Every business requires a knowledge base for business analytics as it can enhance companies' competitiveness in their industry. Most intelligent or analytic services depend a lot upon on knowledge bases. However, building a qualified knowledge base is very time consuming and requires a considerable amount of effort, especially if it is to be manually created. Another problem that occurs when creating a knowledge base is that it will be outdated by the time it is completed and will require constant updating even when it is ready in use. For these reason, it is more advisable to create a computerized knowledge base. This research focuses on building a computerized knowledge base for business using a supervised learning and rule-based method. The method proposed in this paper is based on information extraction, but it has been specialized and modified to extract information related only to a business. The business knowledge base created by our system can also be used for advanced functions such as presenting the hierarchy of technologies and products, and the relations between technologies and products. Using our method, these relations can be expanded and customized according to business requirements.