Two kinds of important issues on Titius-Bode's relation have been discussed up to now: one is if there is a simple mathematical relation between distances of natural bodies orbiting a central body, and the other is if there is any physical basis for such a relation. These may be tackled by answering a question whether Titius-Bode's relation is valid universally in exo-planetary systems. We have examined whether Titius Bode's relation is also applicable to exo-planetary systems by statistically studying the distribution of the ratio of rotational periods of two planets in an exo-planetary system, 55 Cnc, by comparing it with that derived from Titius-Bode's relation. We find that the distribution of the ratio of rotational periods of randomly chosen two planets in the 55 Cnc system is apparently inconsistent with that derived from Titius-Bode's relation. The probability that two data sets are drawn from the same distribution function is 50%. We also find that the Fourier power spectra show that the distribution of the semi-major axis of planets in the 55 Cnc system seems to be stretched. We conclude by pointing out that large numbers of planets should be examined to more convincingly explain the distribution of the distance of planetary formation regions.
Firms can create additional customer values by changing the visibility characteristic of business transactions. Both visible and invisible transactions can provide distinctive values to the customers. Visible transactions are those that are open to the customer: the customer can see the detailed logic of the transaction and may manipulate specific variables to control the transaction process. Invisible transactions mean that customers have little ability to control the transaction flow and may even be insulated from seeing the transaction. These invisible transactions will be taken care of only by suppliers, and be regarded as a process performed by suppliers. This paper pursues finding out the contingencies of successful transaction visibility change by answering to the following question; "when does increasing(or decreasing) transaction visibility make sense to customers?" This archival case study finds out that transaction visibility change should fit to the need and capabilities of customers. Increasing transaction visibility makes sense when customers need a certain supplier's performance and have a confidence in the capabilities of executing the performance. By the same token, decreasing transaction visibility makes sense when customers have substantial troubles in conducting their current transaction actions or when customers don't feel it necessary to conduct them separately because they can be derived from other action.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권12호
/
pp.6080-6096
/
2019
Text classification is one of the fundamental techniques in natural language processing. Numerous studies are based on text classification, such as news subject classification, question answering system classification, and movie review classification. Traditional text classification methods are used to extract features and then classify them. However, traditional methods are too complex to operate, and their accuracy is not sufficiently high. Recently, convolutional neural network (CNN) based one-hot method has been proposed in text classification to solve this problem. In this paper, we propose an improved method using CNN based skip-gram method for Chinese text classification and it conducts in Sogou news corpus. Experimental results indicate that CNN with the skip-gram model performs more efficiently than CNN-based one-hot method.
Knowledge base means a library stored in computer system providing useful information or appropriate solutions to specific area. Knowledge base associated with autism is the complex multidimensional information set related to the disease autism for its pathogenic factor and therapy. This paper focuses on the knowledge of biological molecular information extracted from massive biomedical texts with the aid of widespread used machine learning methods. Six classes of biological molecular information (such as protein, DNA, RNA, cell line, cell component, and cell type) are concerned and the probability statistics method, conditional random fields (CRFs), is utilized to discover these knowledges in this work. The knowledge base can help biologists to etiological analysis and pharmacists to drug development, which can at least answer four questions in question-answering (QA) system, i.e., which proteins are most related to the disease autism, which DNAs play important role to the development of autism, which cell types have the correlation to autism and which cell components participate the process to autism. The work can be visited by the address http://134.175.110.97/bioinfo/index.jsp.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권10호
/
pp.3230-3255
/
2022
Causality mining in NLP is a significant area of interest, which benefits in many daily life applications, including decision making, business risk management, question answering, future event prediction, scenario generation, and information retrieval. Mining those causalities was a challenging and open problem for the prior non-statistical and statistical techniques using web sources that required hand-crafted linguistics patterns for feature engineering, which were subject to domain knowledge and required much human effort. Those studies overlooked implicit, ambiguous, and heterogeneous causality and focused on explicit causality mining. In contrast to statistical and non-statistical approaches, we present Bidirectional Encoder Representations from Transformers (BERT) integrated with Multi-level Feature Networks (MFN) for causality recognition, called BERT+MFN for causality recognition in noisy and informal web datasets without human-designed features. In our model, MFN consists of a three-column knowledge-oriented network (TC-KN), bi-LSTM, and Relation Network (RN) that mine causality information at the segment level. BERT captures semantic features at the word level. We perform experiments on Alternative Lexicalization (AltLexes) datasets. The experimental outcomes show that our model outperforms baseline causality and text mining techniques.
오늘날 정보 추출의 한 단계로서 개체명 인식은 정보검색 분야 뿐 아니라 질의응답과 요약 분야에서 매우 유용하게 사용되고 있다. 개체명은 일반 단어와 달리 다양한 문서에서 꾸준히 생성되고 변화되고 있다. 이와 같은 개체명의 특성 때문에 여러 응용 시스템에서 미등록어 문제가 야기된다. 본 논문에서는 이런 미등록어 문제를 해결하기 위해 기계학습 기반 개체명 인식 시스템을 위한 새로운 자질 생성 방법을 제안한다. 일반적으로 기계학습 기반 개체명 인식 시스템은 단어 단위의 자질을 사용하므로 구절 단위의 개체명을 그대로 자질로 사용할 수 없다. 이 문제를 해결하기 위해 본 논문에서는 새로운 구절 단위의 정보를 단어 단위의 자질로 변환하는 자질 생성 방법을 제안하였다. 이 방법으로 개체명 사전과 WordNet을 개체명 인식의 자질로 사용할 수 있었다. 그 결과 영어 개체명 시스템은 F1 점수의 약 6%가 향상되었고 오류의 약 38%가 줄어들었다.
개체명 인식은 정보검색 시스템, 질의응답 시스템, 기계번역 시스템 등의 성능을 향상시키기 위하여 사용된다. 개체명 인식은 일반적으로 PLOs(인명, 지명, 기관명)을 대상으로 하며, 주로 미등록어와 고유명사로 이루어져 있기 때문에 고유명사나 미등록어는 중요한 개체명 후보로 쓰일 수 있다. 하지만 도서명, 영화명, 음악명, TV프로그램명과 같은 제목 개체명은 PLO와는 달리 단어부터 문장까지 매우 다양한 형태를 지니고 있어서 개체명 인식이 쉽지 않다. 본 논문에서는 뉴스 기사문을 이용하여 제목 개체명을 빠르게 인식하고 자동으로 사전을 구축하는 방법을 제안한다. 먼저 특수기호로 묶인 어절을 추출하고, 주변 문맥 단어 및 단어 거리를 이용하여 SVM으로 제목 후보들을 추출하였다. 이렇게 추출된 제목 후보들은 상호 정보량을 가중치로 SVM을 이용해 제목 유형을 분류하였다.
인공지능 기반 지능형 시스템의 개발에는 일반적으로 신뢰성 높은 대규모 지식처리, 지식의 통합과 인간 수준의 이해, 지식기반 인간-기계협업, 전문가 수준의 지능 서비스 등의 효과적 통합이 요구된다. 특히 빅데이터 이해 기반 자가학습형 지식베이스 및 추론 기술 개발을 목표로 하고 있는 과제의 일환으로 개발 중인 WiseKB 통합 플랫폼은 대용량 지식을 저장하여 추론과정을 통한 질의 및 응답이 가능한 대규모 지식 베이스 역할을 수행하며 이를 위하여 지식표현, 자원통합, 지식저장소, 지식베이스, 복합추론, 지식학습 등의 요소기술들의 효과적 통합이 필수적이다. 통합 플랫폼의 효율적 통합을 위해서는 정확한 요구사항 분석이 중요하며, 이는 시스템의 특성을 고려한 적절한 요구사항 분석 방법론의 적용이 필요하다. 대표적인 요구사항 분석 방법인 순차적 방법론과 순환-점진적 방법론은 WiseKB와 같은 시스템의 대규모 복합적 개발 특성을 고려할 때 다양한 요구사항을 체계적으로 파악하기에 한계가 있다. 본 논문에서는 이러한 한계를 개선하고자 순차적 방법과 순환-점진적 방법론을 결합해 각 단점을 보완하고 대규모 복합적 특성을 갖는 시스템의 요구사항 분석을 효율적으로 진행할 수 있는 통합 방법론을 제시하고, 실제 적용을 통해 그 효과를 보인다.
최근 텍스트분류, 감성분석, 질의응답 등의 자연어 처리를 위해서 사전학습언어모델(Pre-trained Language Model, PLM)의 중요성은 날로 강조되고 있다. 한국어 PLM은 범용적인 도메인의 자연어 처리에서 높은 성능을 보이나 금융, 제조, 법률, 의료 등의 특화된 도메인에서는 성능이 미약하다. 본 연구는 금융도메인 뿐만 아니라 범용도메인에서도 우수한 성능을 보이는 금융특화 언어모델의 구축을 위해 언어모델의 학습과정과 미세조정 방법을 제안하는 것이 주요 목표이다. 금융도메인 특화언어모델을 구축하는 과정은 (1) 금융데이터 수집 및 전처리, (2) PLM 또는 파운데이션 모델 등 모델 아키텍처 선정, (3) 도메인 데이터 학습과 인스트럭션 튜닝, (4) 모델 검증 및 평가, (5) 모델 배포 및 활용 등으로 구성된다. 이를 통해 금융도메인의 특성을 살린 사전학습 데이터 구축방안과 효율적인 LLM 훈련방법인 적응학습과 인스트럭션 튜닝기법을 제안하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권1호
/
pp.407-420
/
2015
Natural Language Question Answering (NLQA) and Prescriptive Analytics (PA) have been identified as innovative, emerging technologies in 2015 by the Gartner group. These technologies require knowledge bases that consist of data that has been extracted from unstructured texts. Every business requires a knowledge base for business analytics as it can enhance companies' competitiveness in their industry. Most intelligent or analytic services depend a lot upon on knowledge bases. However, building a qualified knowledge base is very time consuming and requires a considerable amount of effort, especially if it is to be manually created. Another problem that occurs when creating a knowledge base is that it will be outdated by the time it is completed and will require constant updating even when it is ready in use. For these reason, it is more advisable to create a computerized knowledge base. This research focuses on building a computerized knowledge base for business using a supervised learning and rule-based method. The method proposed in this paper is based on information extraction, but it has been specialized and modified to extract information related only to a business. The business knowledge base created by our system can also be used for advanced functions such as presenting the hierarchy of technologies and products, and the relations between technologies and products. Using our method, these relations can be expanded and customized according to business requirements.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.