• Title/Summary/Keyword: quasilinear elliptic

Search Result 28, Processing Time 0.021 seconds

EXISTENCE OF BOUNDARY BLOW-UP SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS

  • Wu, Mingzhu;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1119-1132
    • /
    • 2009
  • In this paper, we consider the quasilinear elliptic system $\\div(|{\nabla}u|^{p-2}{\nabla}u)=u(a_1u^{m1}+b_1(x)u^m+{\delta}_1v^n),\;\\div(|{\nabla}_v|^{q-2}{\nabla}v)=v(a_2v^{r1}+b_2(x)v^r+{\delta}_2u^s)$, in $\Omega$ where m > $m_1$ > p-2, r > $r_1$ > q-, p, q $\geq$ 2, and ${\Omega}{\subset}R^N$ is a smooth bounded domain. By constructing certain super and subsolutions, we show the existence of positive blow-up solutions and give a global estimate.

  • PDF

ON EXISTENCE OF WEAK SOLUTIONS OF NEUMANN PROBLEM FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING p-LAPLACIAN IN AN UNBOUNDED DOMAIN

  • Hang, Trinh Thi Minh;Toan, Hoang Quoc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1169-1182
    • /
    • 2011
  • In this paper we study the existence of non-trivial weak solutions of the Neumann problem for quasilinear elliptic equations in the form $$-div(h(x){\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)+b(x){\mid}u{\mid}^{p-2}u=f(x,\;u),\;p{\geq}2$$ in an unbounded domain ${\Omega}{\subset}\mathbb{R}^N$, $N{\geq}3$, with sufficiently smooth bounded boundary ${\partial}{\Omega}$, where $h(x){\in}L_{loc}^1(\overline{\Omega})$, $\overline{\Omega}={\Omega}{\cup}{\partial}{\Omega}$, $h(x){\geq}1$ for all $x{\in}{\Omega}$. The proof of main results rely essentially on the arguments of variational method.

ON THE MINIMAL ENERGY SOLUTION IN A QUASILINEAR ELLIPTIC EQUATION

  • Park, Sang-Don;Kang, Chul
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • In this paper we seek a positive, radially symmetric and energy minimizing solution of an m-Laplacian equation, -div$($\mid${\nabla}u$\mid$^{m-2}$\mid${\nabla}u)\;=\;h(u)$. In the variational sense, the solutions are the critical points of the associated functional called the energy, $J(v)\;=\;\frac{1}{m}\;\int_{R^N}\;$\mid${\nabla}v$\mid$^m\;-\;\int_{R^N}\;H(v)dx,\;where\;H(v)\;=\;{\int_0}^v\;h(t)dt$. A positive, radially symmetric critical point of J can be obtained by solving the constrained minimization problem; minimize{$\int_{R^N}$\mid${\nabla}u$\mid$^mdx$\mid$\;\int_{R^N}\;H(u)d;=\;1$}. Moreover, the solution minimizes J(v).

The intermediate solution of quasilinear elliptic boundary value problems

  • Ko, Bong-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.401-416
    • /
    • 1994
  • We study the existence of an intermediate solution of nonlinear elliptic boundary value problems (BVP) of the form $$ (BVP) {\Delta u = f(x,u,\Delta u), in \Omega {Bu(x) = \phi(x), on \partial\Omega, $$ where $\Omega$ is a smooth bounded domain in $R^n, n \geq 1, and \partial\Omega \in C^{2,\alpha}, (0 < \alpha < 1), \Delta$ is the Laplacian operator, $\nabla u = (D_1u, D_2u, \cdots, D_nu)$ denotes the gradient of u and $$ Bu(x) = p(x)u(x) + q(x)\frac{d\nu}{du} (x), $$ where $\frac{d\nu}{du} denotes the outward normal derivative of u on $\partial\Omega$.

  • PDF

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR A CLASS OF SEMIPOSITONE QUASILINEAR ELLIPTIC SYSTEMS WITH DIRICHLET BOUNDARY VALUE PROBLEMS

  • CUI, ZHOUJIN;YANG, ZUODONG;ZHANG, RUI
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.163-173
    • /
    • 2010
  • We consider the system $$\{{{-{\Delta}_pu\;=\;{\lambda}f(\upsilon),\;\;\;x\;{\in}\;{\Omega}, \atop -{\Delta}_q{\upsilon}\;=\;{\mu}g(u),\;\;\;x\;{\in}\;{\Omega},} \atop u\;=\;\upsilon\;=\;0,\;\;\;x\;{\in}\;{\partial\Omega},}$$ where ${\Delta}_pu\;=\;div(|{\nabla}_u|^{p-2}{\nabla}_u)$, ${\Delta}_{q{\upsilon}}\;=\;div(|{\nabla}_{\upsilon}|^{q-2}{\nabla}_{\upsilon})$, p, $q\;{\geq}\;2$, $\Omega$ is a ball in $\mathbf{R}^N$ with a smooth boundary $\partial\Omega$, $N\;{\geq}\;1$, $\lambda$, $\mu$ are positive parameters, and f, g are smooth functions that are negative at the origin and f(x) ~ $x^m$ g(x) ~ $x^n$ for x large for some m, $n\;{\geq}\;0$ with mn < (p - 1)(q - 1). We establish the existence and uniqueness of positive radial solutions when the parameters $\lambda$ and $\mu$ are large.

Kato's Inequalities for Degenerate Quasilinear Elliptic Operators

  • Horiuchi, Toshio
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.15-24
    • /
    • 2008
  • Let $N{\geq}1$ and p > 1. Let ${\Omega}$ be a domain of $\mathbb{R}^N$. In this article we shall establish Kato's inequalities for quasilinear degenerate elliptic operators of the form $A_pu$ = divA(x,$\nabla$u) for $u{\in}K_p({\Omega})$, ), where $K_p({\Omega})$ is an admissible class and $A(x,\xi)\;:\;{\Omega}{\times}\mathbb{R}^N{\rightarrow}\mathbb{R}^N$ is a mapping satisfying some structural conditions. If p = 2 for example, then we have $K_2({\Omega})\;= \;\{u\;{\in}\;L_{loc}^1({\Omega})\;:\;\partial_ju,\;\partial_{j,k}^2u\;{\in}\;L_{loc}^1({\Omega})\;for\;j,k\;=\;1,2,{\cdots},N\}$. Then we shall prove that $A_p{\mid}u{\mid}\;\geq$ (sgn u) $A_pu$ and $A_pu^+\;\geq\;(sgn^+u)^{p-1}\;A_pu$ in D'(${\Omega}$) with $u\;\in\;K_p({\Omega})$. These inequalities are called Kato's inequalities provided that p = 2. The class of operators $A_p$ contains the so-called p-harmonic operators $L_p\;=\;div(\mid{{\nabla}u{\mid}^{p-2}{\nabla}u)$ for $A(x,\xi)={\mid}\xi{\mid}^{p-2}\xi$.

SINGULARITY ESTIMATES FOR ELLIPTIC SYSTEMS OF m-LAPLACIANS

  • Li, Yayun;Liu, Bei
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1423-1433
    • /
    • 2018
  • This paper is concerned about several quasilinear elliptic systems with m-Laplacians. According to the Liouville theorems of those systems on ${\mathbb{R}}^n$, we obtain the singularity estimates of the positive $C^1$-weak solutions on bounded or unbounded domain (but it is not ${\mathbb{R}}^n$ and their decay rates on the exterior domain when ${\mid}x{\mid}{\rightarrow}{\infty}$. The doubling lemma which is developed by Polacik-Quittner-Souplet plays a key role in this paper. In addition, the corresponding results of several special examples are presented.