• Title/Summary/Keyword: quasi-nilpotent

Search Result 14, Processing Time 0.019 seconds

ON LOCAL SPECTRAL PROPERTIES OF GENERALIZED SCALAR OPERATORS

  • Yoo, Jong-Kwang;Han, Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.305-313
    • /
    • 2010
  • In this paper, we prove that if $T{\in}L$(X) is a generalized scalar operator then Ker $T^p$ is the quasi-nilpotent part of T for some positive integer $p{\in}{\mathbb{N}}$. Moreover, we prove that a generalized scalar operator with finite spectrum is algebraic. In particular, a quasi-nilpotent generalized scalar operator is nilpotent.

ON PREHERMITIAN OPERATORS

  • YOO JONG-KWANG;HAN HYUK
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.53-64
    • /
    • 2006
  • In this paper, we are concerned with the algebraic representation of the quasi-nilpotent part for prehermitian operators on Banach spaces. The quasi-nilpotent part of an operator plays a significant role in the spectral theory and Fredholm theory of operators on Banach spaces. Properties of the quasi-nilpotent part are investigated and an application is given to totally paranormal and prehermitian operators.

ON WEAKLY LEFT QUASI-COMMUTATIVE RINGS

  • Kim, Dong Hwa;Piao, Zhelin;Yun, Sang Jo
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.503-509
    • /
    • 2017
  • We in this note consider a generalized ring theoretic property of quasi-commutative rings in relation with powers. We will use the terminology of weakly left quasi-commutative for the class of rings satisfying such property. The properties and examples are basically investigated in the procedure of studying idempotents and nilpotent elements.

On Semirings which are Distributive Lattices of Rings

  • Maity, S.K.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.21-31
    • /
    • 2005
  • We introduce the notions of nilpotent element, quasi-regular element in a semiring which is a distributive lattice of rings. The concept of Jacobson radical is introduced for this kind of semirings.

  • PDF

ON NI AND QUASI-NI RINGS

  • Kim, Dong Hwa;Lee, Seung Ick;Lee, Yang;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.307-317
    • /
    • 2016
  • Let R be a ring. It is well-known that R is NI if and only if ${\sum}^n_{i=0}Ra_i$ is a nil ideal of R whenever a polynomial ${\sum}^n_{i=0}a_ix^i$ is nilpotent, where x is an indeterminate over R. We consider a condition which is similar to the preceding one: ${\sum}^n_{i=0}Ra_iR$ contains a nonzero nil ideal of R whenever ${\sum}^n_{i=0}a_ix^i$ over R is nilpotent. A ring will be said to be quasi-NI if it satises this condition. The structure of quasi-NI rings is observed, and various examples are given to situations which raised naturally in the process.

JACOBSON RADICAL AND NILPOTENT ELEMENTS

  • Huh, Chan;Cheon, Jeoung Soo;Nam, Sun Hye
    • East Asian mathematical journal
    • /
    • v.34 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • In this article we consider rings whose Jacobson radical contains all the nilpotent elements, and call such a ring an NJ-ring. The class of NJ-rings contains NI-rings and one-sided quasi-duo rings. We also prove that the Koethe conjecture holds if and only if the polynomial ring R[x] is NJ for every NI-ring R.

RINGS AND MODULES WHICH ARE STABLE UNDER NILPOTENTS OF THEIR INJECTIVE HULLS

  • Nguyen Thi Thu Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.339-348
    • /
    • 2023
  • It is shown that every nilpotent-invariant module can be decomposed into a direct sum of a quasi-injective module and a square-free module that are relatively injective and orthogonal. This paper is also concerned with rings satisfying every cyclic right R-module is nilpotent-invariant. We prove that R ≅ R1 × R2, where R1, R2 are rings which satisfy R1 is a semi-simple Artinian ring and R2 is square-free as a right R2-module and all idempotents of R2 is central. The paper concludes with a structure theorem for cyclic nilpotent-invariant right R-modules. Such a module is shown to have isomorphic simple modules eR and fR, where e, f are orthogonal primitive idempotents such that eRf ≠ 0.

SOME INVARIANT SUBSPACES FOR SUBSCALAR OPERATORS

  • Yoo, Jong-Kwang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1129-1135
    • /
    • 2011
  • In this note, we prove that every subscalar operator with finite spectrum is algebraic. In particular, a quasi-nilpotent subscala operator is nilpotent. We also prove that every subscalar operator with property (${\delta}$) on a Banach space of dimension greater than 1 has a nontrivial invariant closed linear subspace.

LOCAL SPECTRAL PROPERTIES OF QUASI-DECOMPOSABLE OPERATORS

  • Yoo, Jong-Kwang;Oh, Heung Joon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.543-552
    • /
    • 2016
  • In this paper we investigate the local spectral properties of quasidecomposable operators. We show that if $T{\in}L(X)$ is quasi-decomposable, then T has the weak-SDP and ${\sigma}_{loc}(T)={\sigma}(T)$. Also, we show that the quasi-decomposability is preserved under commuting quasi-nilpotent perturbations. Moreover, we show that if $f:U{\rightarrow}{\mathbb{C}}$ is an analytic and injective on an open neighborhood U of ${\sigma}(T)$, then $T{\in}L(X)$ is quasi-decomposable if and only if f(T) is quasi-decomposable. Finally, if $T{\in}L(X)$ and $S{\in}L(Y)$ are asymptotically similar, then T is quasi-decomposable if and only if S does.

ON QUASI-COMMUTATIVE RINGS

  • Jung, Da Woon;Kim, Byung-Ok;Kim, Hong Kee;Lee, Yang;Nam, Sang Bok;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.475-488
    • /
    • 2016
  • We study the structure of central elements in relation with polynomial rings and introduce quasi-commutative as a generalization of commutative rings. The Jacobson radical of the polynomial ring over a quasi-commutative ring is shown to coincide with the set of all nilpotent polynomials; and locally finite quasi-commutative rings are shown to be commutative. We also provide several sorts of examples by showing the relations between quasi-commutative rings and other ring properties which have roles in ring theory. We examine next various sorts of ring extensions of quasi-commutative rings.